
 1

User Acceptance Testing – A Context-Driven Perspective
Michael Bolton, DevelopSense

michael@developsense.com

https://www.developsense.com

January 7, 2022

A version of this paper was originally published at the PNSQC Conference in 2007. I have made

some minor edits to it.

Biography

Michael Bolton is a consulting software tester and testing teacher who helps people to solve

testing problems that they didn't realize they could solve. In 2006, he became co-author (with

James Bach) of Rapid Software Testing (RST), a methodology and mindset for testing software

expertly and credibly in uncertain conditions and under extreme time pressure. Since then, he has

flown over a million miles to teach RST in 35 countries on six continents.

Michael has over 30 years of experience testing, developing, managing, and writing about

software. For over 20 years, he has led DevelopSense, a Toronto-based testing and development

consultancy. Prior to that, he was with Quarterdeck Corporation for eight years, during which he

managed the company's flagship products and directed project and testing teams both in-house

and around the world.

Contact Michael at michael@developsense.com, on Twitter @michaelbolton, or through his

Web site, http://www.developsense.com.

Abstract: Hang around a software development project for long enough and you'll probably hear

things that seem in conflict: “We need to keep the customers satisfied”; “the customer is always

right”; and “the customers don't know what they want.”

When it comes to testing, it might be a good idea to begin by asking a question: “Who IS the

customer of the testing effort?”

The idiom user acceptance testing appears in many test plans, yet few outline what it means and

what it requires. Is this because it's obvious to everyone what “user acceptance testing” means?

Is because there is no effective difference between user acceptance testing and other testing

activities?

In my view, there are so many possible interpretations of what might constitute “user acceptance

testing” that the term isn’t very helpful until we’ve sorted these things out. We’re on better

ground when we establish a contextual framework and understand what people mean by “user”,

by “acceptance”, and by “testing”. Here, I’ll discuss the challenges of user acceptance testing,

and propose some remedies that testers and teams can use to help to clarify user requirements -

and meet them successfully.

mailto:michael@developsense.com

 2

User Acceptance Testing in Context

A couple of years ago, I worked with an organization that produces software that provides

services to a number of large banks. The services were developed under an agile model.

On the face of it, the applications did not seem terribly complicated, but in operation they

involved thousands of transactions of some quantity of money each; they bridged custom

software at each bank that was fundamentally different; and they needed to defend against fraud

and privacy theft.

The team created user stories to describe functionality, and user acceptance tests—fairly

straightforward and easy to pass—as examples of that functionality. These user acceptance tests

were not merely examples; they were also milestones. When all of the user acceptance tests

passed, a unit of development work was deemed to be “done”1.

When all of the user stories associated with the current project were finished development and

testing, the project changed focus and directed its attention to… “user acceptance testing”. This

involved a month or so of work in which developers worked primarily in support of the testing

group, rather than the other way around. The testing group performed harsh, complex, aggressive

tests, while the developers contributed new test code and fixed newly found problems.

Then there was a month or so of testing at the banks that used the software, performed by the

banks’ testers; that phase was called “user acceptance testing.”

So what is User Acceptance Testing anyway? To paraphrase Gertrude Stein, is there any there

there?

The answer is that there are many potential definitions of user acceptance testing or user

acceptance tests. Here are just a few, culled from articles, conversation with clients and other

testers, and mailing list and forum conversations.

• the last stage of testing before shipping

• tests to assess compliance with standards or requirements, based on specific examples

• a set of tests that are performed for a customer to demonstrate functionality

• a set of tests that are performed by a customer to demonstrate functionality

• not tests at all, but a slam-dunk demo

• outside beta testing

• prescribed test activities that absolutely must be performed, problem-free, before the user

will take the product happily

• prescribed comparison of the product to do demonstrate consistency with explicit

requirements that must be performed as a stipulation in a contract

• any testing that is not done by a developer

• experiential tests that are performed by real users

1 Why the quotes? See https://www.developsense.com/blog/2010/09/done-the-relative-rule-and-the-unsettling-rule/

 3

• tests that are performed by stand-ins or surrogates for real users

• in Agile projects, prescribed automated checks that mark a code-complete milestone

• in Agile projects, automated checks that act as examples of intended functionality; that is,

tests as requirements documentation

Words (like “user”, “acceptance”, and “testing”) are fundamentally ambiguous, especially when

they are combined into idioms (like “user acceptance testing”). People all have different points

of view that are rooted in their own cultures, contexts, and experiences.

If we are to do any kind of testing well, it is vital to avoid being fooled by shallow agreement—

believing that we understand each other when we really do not. Avoid shallow agreement begins

by gaining understanding of the ways in which other people might be saying and thinking

profoundly different things, even though they sound alike.

Resolving the possible conflicts requires critical thinking, context-driven thinking, and general

semantics: we must ask the questions “what do we mean” and “how do we know?” By doing this

kind of analysis, we adapt usefully to the changing contexts in which we work; we defend

ourselves from being fooled; we help to prevent certain kinds of disasters, both for our

organizations and for ourselves. These disasters include everything from loss of life due to

inadequate or inappropriate testing, or merely being thought a fool for using approaches that

aren’t appropriate to the context.

The alternative—understanding the importance of recognizing and applying context-driven

thinking—is to have credibility, capability and confidence to apply skills and tools that will help

us solve real problems for our managers and our customers.

In 2002, with the publication of Lessons Learned in Software Testing, the authors (Kaner, Bach,

and Pettichord) declared a testing community called the Context-Driven School, with these

principles:

For context-driven testers, a discussion of user acceptance testing hinges on identifying aspects

of the context: the problem to be solved; the people who are involved; the practices, techniques,

and approaches that we might choose.

The Basic Principles of the Context-Driven School

1. The value of any practice depends on its context.

2. There are good practices in context, but there are no best practices.

3. People, working together, are the most important part of any project's context.

4. Projects unfold over time in ways that are often not predictable.

5. The product is a solution. If the problem isn't solved, the product doesn't work.

6. Good software testing is a challenging intellectual process.

7. Only through judgment and skill, exercised cooperatively throughout the entire project,

are we able to do the right things at the right times to effectively test our products

 4

In any testing project, there are many members of the project community who might be

customers of the testing mission2. Some of these people include:

• The contracting authority • Technical Support

• The holder of the purse strings • Sales people

• The legal or regulatory authority • Sales support

• The development manager • Marketing people

• The test manager • The shareholders of the company

• The test lead • The CEO

• Testers • The CFO

• Developers • The IT manager

• The department manager for the

people who are using the software

• Network administrators and internal

support

• Documenters • Security personnel

• The end-user’s line manager • Production

• The end-user • Graphic designers

• The end-user’s customers3 • Development managers for other projects

• Business analysts • Designers

• Architects

• Content providers

• Release control

• Strategic partners

Any one of these could be the user in a user acceptance test; several of these could be providing

the item to be tested; several could be mandating the testing; and several could be performing the

testing. The next piece of the puzzle is to ask the relevant questions:

• Which people are offering the item to be tested?

• Who are the people accepting it?

• Who are the people who have mandated the testing?

• Who is doing the testing?

With thirty possible project roles (there may be more), times four possible roles within the

acceptance test (into each of which multiple groups may fall), we have a huge number of

potential interaction models for some notion of “UAT”. Moreover, some of these roles have

different (and sometimes competing) motivations. In terms of who’s doing what, there are too

many possible models of user acceptance testing to hold in your mind without asking some

important context-driven questions for each project that you’re on.

2 Here’s a useful little trick for identifying internal roles: in your head, walk through your company’s buildings and

offices, and think of everyone who works in each one of those rooms.
3 The end-user of the application might be a bank teller; problems in a teller application have an impact on the

bank’s customers in addition to the impact on the teller.

 5

What is Testing?

I’d like to continue our thinking about UAT by considering what testing itself is. James Bach and

I say that testing is:

Evaluating a product by learning about it through experiencing, exploring, and

experimenting, which includes questioning, studying, modeling, observation, inference,

etc.4

Testing also entails, at least, critical evaluation and risk analysis.

Cem Kaner says

• Testing is an empirical, technical investigation of a product, done on behalf of

stakeholders, with the intention of revealing quality-related information of the kind that

they seek.

Kaner also says something that I believe is so important that I should quote it at length. He takes

issue with the notion of testing as confirmation over the vision of testing as investigation, when

he says:

The confirmatory tester knows what the "good" result is and is trying to find proof

that the product conforms to that result. The investigator wants to see what will

happen and is expecting to learn something new from the test. The investigator

doesn't necessarily know how a test will come out, how a line of tests will come

out or even whether the line is worth spending much time on. It's a different

mindset.5

I think this distinction is crucial as we consider some of the different interpretations of user

acceptance testing, because some in some cases, UAT follows an investigative path, and other

cases it takes a more confirmatory path.

What are the motivations for testing?

Kaner’s list of possible motivations for testing includes

• Finding defects

• Maximizing bug count

• Blocking premature product releases

• Helping managers make ship / no-ship decisions

• Minimizing technical support costs

• Assessing conformance to specification

4 In the original version of this paper, we said “questioning a product in order to evaluate it”. That’s still true, but

we’ve extended our definition since then. See http://www.satisfice.com/blog/archives/856.
5 Kaner, Cem, The Ongoing Revolution in Software Testing.

http://www.kaner.com/pdfs/TheOngoingRevolution.pdf, PNSQC, 2004

 6

• Assessing conformance to regulations

• Minimizing safety-related lawsuit risk

• Finding safe scenarios for use of the product (workarounds that make the product

potentially tolerable, in spite of the bugs)

• Assessing quality

• Verifying the correctness of the product

I would add

• assessing compatibility with other products or systems

• assessing readiness for internal deployment

• ensuring that that which used to work still works, and

• design-oriented testing, such as review or test-driven development.

Finally, I would add the idea of “tests” that are not really tests at all, such as a demonstration of a

bug for a developer, a ceremonial demonstration for a customer, or executing a set of steps at a

trade show. Naturally, this list is not exhaustive; there are plenty of other potential motivations

for testing.

What is Acceptance?

Now that we’ve looked at testing, let’s look at the notion of acceptance.

In Testing Computer Software, Cem Kaner, Hung Nguyen, and Jack Falk talk about acceptance

testing as something that the test team does as it accepts a build from the developers. The point

of this kind of testing is to make sure that the product is acceptable to the testing team, with the

goal of making sure that the product is stable enough to be tested. It’s a short test of mainstream

functions with mainstream data. Note that the expression user acceptance testing doesn’t appear

in TCS, which is the best-selling book on software testing in history6.

In Lessons Learned in Software Testing, on which Kaner was the senior author with James Bach

and Brett Pettichord, neither the term “acceptance test” nor “user acceptance test” appears at all.

Neither term seems to appear in Black Box Software Testing, by Boris Beizer. Beizer uses

“acceptance test” several times in Software Testing Techniques, but doesn’t mention what he

means by it.

Perry and Rice, in their book Surviving the Top Ten Challenge of Software Testing, say that

“Users should be most concerned with validating that the system will support the needs of the

organization. The question to be answered by user acceptance testing is ‘will the system meet the

business or operational needs in the real world?’”. But what kind of testing isn’t fundamentally

about that? Thus, in what way is there anything special about user acceptance testing?

Perry and Rice add that user acceptance testing includes “Identifying all the business processes

to be tested; decomposing these processes to the lowest level of complexity, and testing real-life

test cases (people or things (?)) through those processes.” (my question mark)

6 This was true at the time of writing in the original edition of this paper.

 7

Finally, they beg the question by saying, “the nuts and bolts of user acceptance test is (sic)

beyond the scope of this book.”

Without a prevailing definition in the literature, I offer this definition:

Acceptance testing is any testing done by one party for the purpose of accepting another

party's work.

It's whatever the tester and the acceptor agree upon; whatever the key is to open the acceptor’s

gate for acceptance—however secure or ramshackle the lock.

In this light, user acceptance testing could appear at any point on a continuum, with probing,

investigative tests at one end, and softball confirmatory tests at the other.

User Acceptance Testing as Ceremony

In some cases, UAT is not testing at all, but a ceremony. In front of a customer, someone

operates the software, without investigation, sometimes even without confirmation. Probing tests

have been run before; this thing called a user acceptance test is a feel-good exercise. No one is

obliged to be critical in such a circumstance; in fact, they’re required to take the opposite

position, lest they be tarred with the brush of not being a team player.

This brings us to an observation about expertise that might be surprising: for this kind of dog and

pony show, the expert tester demonstrates expertise by never finding a bug.

For example, when the Queen inspects the troops, does anyone expect her to perform an actual

inspection? Does she behave like a drill sergeant, checking for errant facial hairs? Does she ask a

soldier to disassemble his gun so that she can look down the barrel of it? In this circumstance,

the inspection is ceremonial. It’s not a fact-finding mission; it’s a stroll. We might call that kind

of inspection a formality, or pro forma, or ceremonial, or perfunctory, or ritual; the point is that

it’s not an investigation at all.

User Acceptance Testing as Demonstration

Consider the case of a test drive for a new car. Often the customer has made up his mind to

purchase the car, and the object is to familiarize herself with the vehicle and to confirm the

wisdom of his choice. Neither the salesman nor the customer wants problems to be found; that

would be a disaster. In the case, the “test” is a mostly ceremonial part of an otherwise arduous

process, and everyone actively uninterested in finding problems and just wants to be happy. It’s a

feel-good occasion.

This again emphasizes the idea of a user acceptance test as a formality, a ceremony or

demonstration, performed after all of the regular testing has been done. I’m not saying that this is

a bad thing. I am saying that if there’s any disconnect between expectations and execution, there

will be trouble—especially if the tester, by some catastrophe, actually does some investigative

testing and finds a bug.

 8

User Acceptance Testing as Smoke Test

As noted above, Kaner, Falk, and Nguyen refer to acceptance testing as a checkpoint such that

the testers accept or reject a build from the developers. Whether performed by automation or by

a human tester, this form of testing is relatively quick and light, with the intention of determining

whether the build is complete and robust enough for further testing.

On an agile project, the typical scenario for this kind of testing is to have “user acceptance tests”

run continuously or at any time, typically in the form of automated checks. This kind of testing is

by its nature entirely confirmatory unless and until a check suggests some kind of failure and

human tester gets involved again to investigate.

User Acceptance Testing as Mild Exercise

Another kind of user acceptance testing is more than a ceremony, and more than just a build

verification script. Instead, it’s a hoop through which the product must jump in order to pass,

typically performed at a very late stage in the process, and usually involving some kind of

demonstration of basic functionality that an actual user might perform.

Sometimes a real user runs the program; more often it’s a representative of a real user from the

purchasing organization. In other cases, the seller’s people—a salesperson, a product manager, a

development manager, or even a tester—walk through some user stories with the buyer

watching. This kind of testing is essentially confirmatory in nature; it’s more than a demo, but

less than a really thorough look at the product.

The object of this game is still that Party B is supposed to accept that which is being offered by

Party A. In this kind of user acceptance testing, there may be an opportunity for B to raise

concerns or to object in some other way.

One of the common assumptions of this variety of UAT is that the users are seeing the

application for the first time, or perhaps for the first time since they saw the prototype. At this

stage, we’re putting the product in front of someone who is unlikely to have testing skills, and

unlikely to find bugs—and at the very time when the development team is least inclined to fix

them.

A fundamental restructuring of the GUI or the back-end logic is out of the question, no matter

how clunky it may be, so long as it barely fits the user’s requirements. If the problem is one that

requires no thinking, no serious development work, and no real testing effort to fix, it might get

fixed. That’s because every change is a risk; when we change the software late in the game, we

risk throwing away a lot that we know about the product’s quality. Easy changes, typos and such,

are potentially palatable. The only other kind of problem that will be addressed at this stage is

the opposite extreme—the one that’s so overwhelmingly bad that the product couldn’t possibly

ship. Needless to say, this is a bad time to find this kind of problem.

It’s be even worse, though, to discover the middle ground bugs—the mundane, workaday kinds

of problems that one would hope to be found earlier, that will irritate customers and that really

do need to be fixed. These problems will tend to cause contention and agonized debate of a kind

that neither of the other two extremes would cause, and that costs time.

 9

There are a couple of strategies for preventing this catastrophe. One is to involve the user

continuously in the development effort and the project community, as the promoters of the Agile

movement suggest. Agilists haven’t solved the problem completely, but they have been taking

some steps in some good directions, and involving the user closely is a noble goal.

In our shop, although our business analyst not sitting in the bearpit with the developers, as

eXtreme Programming advocates recommend, she’s close at hand, on the same floor, and we try

to make sure that she’s at the daily standup meetings. The bridging of understanding and the

mutual adjustment of expectations between the developers and the business is much easier, and

can happen much earlier in this way of working, and that’s good.

Another antidote to the problem of finding bad bugs too late in the game—although rather more

difficult to pull off successfully or quickly—is to improve testing generally. User stories are

helpful, but they form a pretty weak basis for testing.

That’s because user stories, in my experience, tend to describe simple, atomic tasks. User stories

tend to exercise happy workflows and downplay error conditions and exception handling; they

tend to pay a lot of attention to capability, and not to the other quality criteria—reliability,

usability, scalability, performance, installability, compatibility, supportability, testability,

maintainability, portability, and localizability.

To address this, mandate testers to focus on problems. Direct testers to apply critical thinking

and systems thinking, using science and the scientific method. Tell stories about bugs, how

those bugs were found, and the techniques that helped to find them. At the same time, recognize

the kinds of bugs that those techniques couldn’t have found; and identify techniques that

wouldn’t find those bugs but that would find other bugs. Encourage testers to consider those

“-ilities” beyond capability.

User Acceptance Testing as Usability Testing

User acceptance testing might be testing focused on usability. In this, there is an important

distinction to be made between ease of learning and ease of use.

Here’s a trivial example: compared to a program that has only a command-line interface, an

application with a graphical user interface may provide excellent affordance—that is, it may

expose its capabilities clearly to the user—but that affordance may require a compromise with

efficiency, or constrain the options available to the user.

Some programs are very solicitous and hold the user’s hand, but like an obsessive parent, that

can slow down and annoy the experienced user. So: if your model for usability testing involves a

short test cycle, consider that you’re seeing the program for much less time than you (or the

customers of your testing) will be using it. You won’t necessarily have time to develop expertise

with the program if it’s a challenge to learn but easy to use, nor will you always be able to tell if

the program is both hard to learn and hard to use.

 10

In addition, consider a wide variety of user models in a variety of roles—from trainees to experts

to managers. Consider using personas, a technique for creating elaborate and motivating stories

about users.7

User Acceptance Testing as Validation

In general, with confirmatory automated checks, a single bit of specified information (yes/no,

pass/fail, true/false), is required for a test to “pass”; in testing, we consider many more bits of

information, and many of those bits are unspecified in advance of the test.

• “When a developer says ‘it works’, he really means ‘it appears to fulfill some

requirement to some degree.’”

– James Bach

• “When you hear someone say, ‘It works,’ immediately translate that into, ‘We haven't

tried very hard to make it fail, and we haven't been running it very long or under very

diverse conditions, but so far we haven't seen any failures, though we haven't been

looking too closely, either.’”

– Jerry Weinberg

Conformance to documented requirements is at often at issue in a contractual, time-and-materials

development model, where the product must pass a “user acceptance test” as a condition of sale.

When such projects are in their later stages, they’re are often behind schedule; people are tired

and grumpy; lots of bugs have been found and fixed. There’s lots of pressure to end the project,

and there’s a corresponding disincentive to find problems.

At this point, the skillful tester faces a dilemma: should she look actively for problems (thereby

annoying both the client and his own organization should she find one), or should she be a “team

player”?

My final take about this sense of UAT: when people describe it, they tend to talk about

validating the requirements. There are two issues here. First, can you describe all of the

requirements for your product? Can you? Once you’ve done that, can you test for them? Are the

requirements all clear, complete, consistent, up to date? There’s a vast difference between

requirements and requirements documents.

Second, shouldn’t requirements be validated as the software is being built? Any software

development project that hasn’t attempted to validate requirements up until a test cycle, late in

the game, called “user acceptance testing” is likely to be in serious trouble, so I can’t imagine

that’s what they mean.

Here I agree with the Agilistas again—that it’s helpful to validate requirements continuously

throughout the project, and to adapt them when new information comes in and the context

changes. Skilled testers can be a boon to the project when they supply new, useful information.

7 Cooper, Alan, The Inmates Are Running the Asylum: Why High Tech Products Drive Us Crazy and How to Restore

the Sanity. Pearson Education, 2004.

 11

User Acceptance Testing as Assigning Blame

There are sometimes circumstances in which relations between the development organization

and the customer are so fraught that the customer actively wants to reject the software. There

may be all kinds of reasons for this. In the face of a problematic projects, customers might be

trying to find someone to blame; they may want to show the vendor's malfeasance or

incompetence to protect themselves from their own games of schedule chicken; they may want to

avoid paying the bill.

This is testing as scapegoating; rather than a User Acceptance Test, it’s more of a User Rejection

Test. In this case, as in the last one, the tester is actively trying to find problems, so she’ll

challenge the software harshly to try to make it fail. This isn’t a terribly healthy emotional

environment, but context-driven thinking demands that we consider it.

User Acceptance Testing When The User is Other Software

There is yet another sense of the idea of UAT: that the most direct and frequent user of a piece of

code is not a person, but other software. In How to Break Software, James Whittaker talks about

a four-part user model, in which humans are only one part. The operating system, the file system,

and application programming interfaces, or APIs, are potential users of the software too. Does

your model of “the user” include that notion? It could be very important; humans can tolerate a

lot of imprecision and ambiguity that software doesn’t handle well.

User Acceptance Testing As Beta Testing

There's another model, not a contract-driven model, in which UAT is important. In the 1990s, I I

was a program manager for Quarterdeck, the company that produced DESQview and other mass-

market products such as QEMM-386 and CleanSweep8. We didn’t talk about user acceptance

testing very much in the world of mass-market commercial software. Our issue was that there

was no single user, so user acceptance testing wasn’t our thing.

We did talk about beta testing, and we did some of that—or rather we got our users to do it. It

took us a little while to recognize that we weren’t getting a lot of return on our investment in

time and effort. Users, in our experience, didn’t have the skills or the motivation to test our

product. They weren’t getting paid to do it, their jobs didn’t depend on it, they didn’t have the

focus, and they didn’t have the time. Organizing them was a hassle, and we didn’t get much

worthwhile feedback, though we got some.

Many companies regularly release beta versions of their software9. Seriously, this form of user

acceptance testing has yet another motivation: it’s at least in part a marketing tool. It’s at least in

part designed to get customers interested in the software; to treat certain customers as an elite; to

encourage early adopters. It doesn’t do much for the testing of the product, but it’s a sound

marketing strategy.

In those days, I was younger, and inexperienced at recognizing process traps. I read books that

told me how important “user acceptance testing was” and agonized and tried for ages to figure

8 Those of you with large amounts of gray hair may remember these products.
9 Yes, I know: “…and call them ‘releases’.”)

 12

out how to implement it in the context of mass-market commercial software. It was a long time

before I realized that we didn’t need to do what people were talking about in the books, in

context-free ways. Those things didn’t fit our context.

This was a big lesson: don’t listen to any statement or proclamation—especially about process

stuff—from someone that doesn’t establish the context in which their advice might be expected

to succeed or fail. Without a healthy dose of consideration for context, there’s a risk of pouring

effort or resources into things that don’t matter, and ignoring things that do matter.

User Acceptance Tests as Examples

In the Agile world, it’s becoming increasing popular to frame requirements in terms of

Behaviour Driven Development, or Acceptance Test Drive Development, or contract tests.

The claim is that these approaches can help add to a common understanding between developers

and the business people. These approaches may have value in that they provide checkable

examples of expected behaviour, but are design activity far more than they are testing activities.

As such, they shouldn’t be confused with testing the software, and examples shouldn’t be

misrepresented as tests.

User Acceptance Tests as Milestones

Checked examples are sometime used as milestones for the completion of a body of work, to the

extent that the development group can say “The code is ready to go when all of the acceptance

tests run green.” Ready to go—but where?

Something is “done” or “complete” relative to a particular perspective10, and it’s important to be

clear on what that perspective is, what the milestone represents. I recall J.B. Rainsberger at one

point, in a mailing list, saying something like “a green bar doesn't tell you you're done; it tells

you that you're ready for a real tester to kick the snot out of it.”

Automated acceptance checks may be very useful tools for detecting particular problems, by

encoding specific test ideas, procedures, and data, and re-running them frequently; “change

detectors”, as Cem Kaner has called them. This can be an exceedingly powerful means for

recognizing easy bugs and coding errors.

That said, computers are exceedingly reliable, but the software running on them may not be

doing what we believe it’s doing, and automated checks are software. Whatever else we might

believe, software is not doing the testing.

Computers and software don’t have the capacity to recognize problems as problems; they must

very explicitly programmed to alert us to specific problems in very specific ways. They are not

social agents. They certainly don’t have the imagination or cognitive skills to say, “What if...?”

or “That’s funny…” as human testers do.

10 https://www.developsense.com/blog/2010/09/done-the-relative-rule-and-the-unsettling-rule/

 13

Developers and people fascinated by programming tend to like automated checking. There are

good reasons for that. A few quick and simple checks can confirm that the product meets the

developer's and the team’s intentions to some degree, without obvious problems. Getting to that

point represents a good milestone, but it’s important to keep clear on the difference between a

milestone and a finish line.

User Acceptance Testing as Experiential Testing

In the last couple of years, James Bach and I have developed our notion of experiential testing.

A software product not simply the code. Software contains code, of course, but the product is

really the experience that we provide for people as they try to get work done, accomplish goals,

make money, have fun, and so forth. Testing that doesn’t address the user’s experience runs the

risk of missing problems that matter.

Experiential testing is testing in which the tester’s encounter with the product, and the actions

that the tester performs, are practically indistinguishable from those of the contemplated user.

The tester, in this case, might be a genuine end user with contributory expertise11 in the domain

in which the product is set. Real end users lend credibility to experiential testing because they

have domain expertise necessary to evaluate the state of the product in terms of the tasks that

they intend to accomplish.

The tester might otherwise be someone with interactional expertise12 sufficient to evaluate the

product and identify problems that would represent threats to value for actual end users.

The object of the exercise here is to put the product in front of people and to show how it might

behave in terms of real-world use.

User Acceptance Testing as Experiential AND Investigative Testing

Earlier in this paper, I identified modes of testing that might be ceremonial or demonstrative.

Activity called testing can be experiential without being exploratory or experimental, as when a

tester follows a set of scripted procedures, and doesn’t deviate from them. That’s fine, when the

object of the game is to avoid or suppress the discovery of new problems.

On the other hand, the goal of experiential user acceptance testing might be to find problems that

threaten value to people who matter. In this case, the tester must have a degree of freedom to

explore the product, and freedom to design and perform experiments that challenge the software

and people’s assumptions about its goodness.

In this form of user acceptance testing, the responsible tester must have more than expertise in

the product domain. The tester must also have contributory expertise with respect to testing

11 People who can accomplish the work and/or advance the state of the art in a field have contributory expertise. See

Collins and Evans, Rethinking Expertise.
12 People who have expertise in a particular field, such that they’re not capable of doing the work, but are able to

understand and speak the practice language of the field pretty much as well as the contributory experts do. Collins

and Evans call this interactional expertise.

 14

itself. That is, the tester must have testing skills relevant to the task at hand. Such skills include

the ability to

• learn and model the product rapidly

• model quality criteria for diverse stakeholders

• perform risk analysis and identify threats to value

• model coverage

• identify, develop, apply oracles (means of recognizing problems)

• obtain or develop tools

• design and perform experiments

• investigate bugs

• report on the testing work13

It’s unusual for end users to have these skills without some specialized training in testing14. One

good workaround is to pair skilled responsible testers15 with expert users taking the role of

supporting testers.

When to Do Acceptance Testing

It should be clear by now that there are many notions of acceptance testing, many people who

might perform it, and many contexts in which it might happen. Given that, when should user

acceptance testing be done? Here’s a heuristic:

As soon as there’s something for a user to observe and evaluate, such that a user is in a position

to provide useful feedback to people on the development team, give the user opportunity to

provide that feedback.

Throughout the project, advocate for opportunities to engage with users16. While the product is

being designed, if there’s a chance to engage users in review, offer that opportunity to users.

Show them designs, plans, prototypes, mockups, and solicit comments. Systematically question

assumptions about the team’s knowledge of the product domain and the problems to be solved.

Consider engage users in helping to answer four questions: What are we building? Who are we

building it for? What could go wrong? How would we know?17.

Whether you’ve got a partially- or fully-built product, engage with users and show them the

product whenever they’re willing to look at it.

13 This list is just a starter set. For a more comprehensive listing, see https://www.satisfice.com/download/elements-

of-excellent-testing
14 Alas, too often, testers may not have sufficient training or skill in these things either.
15 See https://www.satisfice.com/blog/archives/1364.
16 The idea here is to increase value-related and project-related testability; see

https://www.satisfice.com/download/heuristics-of-software-testability
17 https://www.developsense.com/blog/2018/03/four-and-more-questions/

 15

Conclusion

Context-driven thinking is all about appropriate behaviour, solving a problem that actually exists,

rather than one that happens in some theoretical framework. It asks of everything you touch, “Do

you really understand this thing, or do you understand it only within the parameters of your

context? Are we folklore followers, or are we investigators?”

Context-driven thinkers try to look carefully at what people say, and how different cultures

perform their practices. We're trying to make better decisions, on behalf of our clients, based on

the circumstances in which we're working.

This means that context-driven testers shouldn’t panic and attempt to weasel out of the service

role: “That’s not user acceptance testing, so since our definition doesn’t agree with ours, we’ll

simply not do it.” We don’t feel that that’s competent and responsible behaviour.

So, I’ll repeat the definition.

Acceptance testing is any testing done by one party for the purpose of accepting another

party's work.

It's whatever the acceptor says it is; whatever the key is to open the gate—however secure or

ramshackle the lock. The key to understanding acceptance testing is to understand the

dimensions of the context.

Think about the distinctions between ceremony, demonstration, self-defense, scapegoating, and

real testing. Think, too, about the distinction between a decision rule and a test. A decision rule

produces a yes or no result that prompts a particular action; a test is information gathering that

informs action.

Many people who want UAT are seeking decision rules and ceremony. That may be good

enough in certain contexts. If it turns out that the purpose of your activity is ceremonial, it

doesn't matter how badly you're testing. In fact, if you want confirmation or ceremony, the less

investigation you’re doing, the better—or as someone once said, if something isn’t worth doing,

it’s certainly not worth doing well.

If your goal is to find problems that matter, one key is to focus on finding problems, rather than

on demonstration and confirmation. Another key is to diversify testing approaches to include

automated checks, critical investigation, and experiential testing. Diversity of points of view and

diversity of approaches are valuable in testing. Different minds will spot different patterns, and

that’s all to the good.

