
An Exploratory Tester’s Notebook
Michael Bolton, DevelopSense
mb@developsense.com

Biography
Michael Bolton is the co-author (with senior author James Bach) of Rapid Software Testing, a
course that presents a methodology and mindset for testing software expertly in uncertain
conditions and under extreme time pressure.

A testing trainer and consultant, Michael has over 17 years of experience in the computer
industry testing, developing, managing, and writing about software. He is the founder of
DevelopSense, a Toronto-based consultancy. He was with Quarterdeck Corporation for eight
years, during which he delivered the company’s flagship products and directed project and
testing teams both in-house and around the world.

Michael has been teaching software testing around the world for eight years. He was an invited
participant at the 2003, 2005, 2006, and 2007 Workshops on Teaching Software Testing in
Melbourne and Palm Bay, Florida; was a member of the first Exploratory Testing Research
Summit in 2006. He is also the Program Chair for TASSQ, the Toronto Association of System
and Software Quality, and a co-founder of the Toronto Workshops on Software Testing. He has
a regular column in Better Software Magazine, writes for Quality Software (the magazine
published by TASSQ), and sporadically produces his own newsletter.

Michael lives in Toronto, Canada, with his wife and two children.

Michael can be reached at mb@developsense.com, or through his Web site,
http://www.developsense.com

Abstract: One of the perceived obstacles towards testing using an exploratory testing approach
is that exploration is unstructured, unrepeatable, and unaccountable, but a look at history
demonstrates that this is clearly not the case. Explorers and investigators throughout history
have made plans, kept records, written log books, and drawn maps, and have used these
techniques to record information so that they could report to their sponsors and to the world at
large. Skilled exploratory testers use similar approaches to describe observations, to record
progress, to capture new test ideas, and to relate the testing story and the product story to the
project community. By focusing on what actually happens, rather than what we hope will
happen, exploratory testing records can tell us even more about the product than traditional pre-
scripted approaches do.

In this presentation, Michael Bolton invites you on a tour of his exploratory testing notebook and
demonstrates more formal approaches to documenting exploratory testing. The tour includes a
look at an informal exploratory testing session, simple mapping and diagramming techniques,
and a look at a Session-Based Test Management session sheet. These techniques can help
exploratory testers to demonstrate that testing has been performed diligently, thoroughly, and
accountably in a way that gets to the heart of what excellent testing is all about: a skilled
technical investigation of a product, on behalf of stakeholders, to reveal quality-related
information of the kind that they seek.

Documentation Problems
There are many common claims about test documentation: that it’s required for new testers or
share testing with other testers; that it’s needed to deflect legal liability or to keep regulators
happy; that it’s needed for repeatability, or for accountability; that it forces you to think about
test strategy. These claims are typically used to support heavyweight and formalized approaches
to test documentation (and to testing itself), but no matter what the motivation, the claims have
this in common: they rarely take context, cost, and value into account. Moreover, they often
leave out important elements of the story. Novices in any discipline learn not only through
documents, but also by observation, participation, practice, coaching, and mentoring; tester may
exchange information through conversation, email, and socialization. Lawyers will point out
that documentation is only one form of evidence—and that evidence can be used to buttress or to
skewer your case—while regulators (for example, the FDA1) endorse the principle of the least
burdensome approach. Processes can be repeatable without being documented (how do people
get to work in the morning?), and auditors are often more interested in the overview of the story
than each and every tiny detail. Finally, no document—least of all a template—ever forced
anyone to think about anything; the thinking part is always up to the reader, never to the
document.

Test documentation is often driven by templates in a way that standardizes look and feel without
considering content or context. Those who set up the templates may not understand testing
outside the context for which the template is set up (or they may not understand testing at all);
meanwhile, testers who are required to follow the templates don’t own the format. Templates—
from the IEEE 829 specification to Fitnesse tests on Agile projects—can standardize and
formalize test documentation, but they can also standardize and formalize thinking about testing
and our approaches to it. Scripts stand the risk of reducing learning rather than adding to it,
because they so frequently leave out the motivation for the test, alternative ways of
accomplishing the user’s task, and variations that might expose bugs.

Cem Kaner, who coined the term exploratory testing in 1983, has since defined it as “a style of
software testing that emphasizes the personal freedom and responsibility of the individual tester
to continually optimize the value of her work by treating test-related learning, test design, and
execution as mutually supportive activities that run in parallel throughout the project.”2 A useful
summary is “simultaneous test design, test execution, and learning.” In exploratory testing, the
result of the last test strongly influences the tester’s choices for the next test. This suggests that
exploratory testing is incompatible with most formalized approaches to test documentation, since
most of them segregate design, execution, and learning; most emphasize scripted actions; and
most try to downplay the freedom and responsibility of the individual tester. Faced with this
problem, the solution that many people have used is simply to avoid exploratory testing—or at
least to avoid admitting that they do it, or to avoid talking about it in reasonable ways. As

1 The Least Burdensome Provisions of the FDA Modernization Act of 1997; Concept and Principles; Final
Guidance for FDA and Industry. www.fda.gov/cdrh/modact/leastburdensome.html
2 This definition was arrived at through work done at the 2006 Workshop on Heuristic and Exploratory Testing,
which included James Bach, Jonathan Bach, Scott Barber, Michael Bolton, Tim Coulter, Rebecca Fiedler, David
Gilbert, Marianne Guntow, James Lyndsay, Robert Sabourin, and Adam White. The definition was used at the
November 2006 QAI Conference. Kaner, “Exploratory Testing After 23 Years”, www.kaner.com/pdfs/ETat23.pdf

McLuhan said, “We shape our tools; thereafter our tools shape us.”3 Test documentation is a
tool that shapes our testing.

Yet exploration is essential to the investigative dimension of software testing. Testing that
merely confirms expected behaviour can be expected to suffer from fundamental attribution error
(“it works”), confirmation bias (“all the tests pass, so it works”), and anchoring bias (“I know it
works because all the tests pass, so it works”). Testers who don’t explore the software fail to
find the bugs that real users find when they explore the software. Since any given bug is a
surprise, no script is available to tell you how to investigate that bug.

Sometimes documentation is a product, a deliverable of the mission of testing, designed to be
produced for and presented to someone else. Sometimes documentation is a tool, something to
help keep yourself (or your team) organized, something to help with recollection, but not
intended to be presented to anyone4. In the former case, presentation and formatting are
important; in the latter case, they’re much less important. In this paper, I’ll introduce (or for
some people, revisit) two forms of documentation—one primarily a tool, and the other a
product—to support exploratory approaches. The first tends to emphasize the learning
dimension, the latter tends to be more applicable to test design and test execution.

This paper and the accompanying presentation represent a highly subjective and personal
experience report. While I may offer some things that I’ve found helpful, this is not intended to
be prescriptive, or to offer “best practices”; the whole point of notebooks—for testers, at least—
is that they become what you make of them.

An Exploratory Tester’s Notebook
Like most of us, I’ve kept written records, mostly for school or for work, all my life. Among
other means of preserving information, I’ve used scribblers, foolscap paper, legal pads, reporter
or steno notepads, pocket notepads, ASCII text files, Word documents, spreadsheets, and
probably others.

In 2005, I met Jon Bach for the first time. Jon, brother of James Bach, is an expert exploratory
tester (which apparently runs in the family) and a wonderful writer on the subject of E.T., and in
particular how to make it accountable. The first thing that I noticed on meeting Jon is that he’s
an assiduous note-taker—he studied journalism at university—and over the last year, he has
inspired me to improve my note-taking processes.

The Moleskine Notebook
One factor in my personal improvement in note-taking was James Bach’s recommendation of the
Moleskine pocket notebook. I got my first one at the beginning of 2006, and I’ve been using it
ever since. There are several form factors available, with soft or hard covers. The version I have
fits in a pocket; it’s perfect-bound so it lies flat; it has a fabric bookmark and an elasticized loop
that holds the book closed. The pages can be unlined, lined, or squared (graph paper)5. I prefer
the graph paper; I find that it helps with sketching and with laying out tables of information.

3 Marshall McLuhan, Understanding Media: The Extensions of Man (Critical Edition). Gingko Press, Costa
Madera, CA, September 2003.
4 See Kaner, Cem; Bach, James, and Pettichord, Bret, Lessons Learned in Software Testing. John Wiley & Sons,
New York, 2002.
5 They can also be lined with five-line staff paper for musicians.

Figure 1: Page from Michael Bolton's Notebook #2

The Moleskine has a certain kind of chic/geek/boutique/mystique kind of appeal; it turns out that
there’s something of a cult around them, no doubt influenced by their marketing. Each notebook
comes with a page of history in several languages, which adds to the European cachet. The page
includes the claim that the Moleskine was used by Bruce Chatwin, Pablo Picasso, Ernest
Hemingway, Henri Mattisse, Andre Breton, and others who are reputed to have used the
Moleskine. The claim is fictitious6, although these artists did use books of the same colour, form
factor, with sewn bindings and other features that the new books reproduce. The appeal, for me,
is that the books are well-constructed, beautiful, and inviting. This reminds me of Cem Kaner’s
advice to his students: “Use a good pen. Lawyers and others who do lots of handwriting buy
expensive fountain pens for a reason. The pen glides across the page, requiring minimal pressure
to leave ink.”7 A good tool asks to be used.

Why Use Notebooks?
In the age of the personal digital assistant (I have one), the laptop computer, (I have one), and the
desktop computer (I have one), and the smart phone (I don’t have one), why use notebooks?

• They’re portable, and thus easy to have consistently available.
• They never crash.
• They never forget to auto-save.
• The batteries don’t wear out, they don’t have

to be recharged—and they’re never AA
when you need AAA or AAA when you
need AA.

• You don’t have to turn them off with your
other portable electronic devices when the
plane is taking off or landing.

Most importantly, notebooks are free-form and
personal in ways that the “personal” computer
cannot be. Notebooks afford diversity of
approaches, sketching and drawing, different
thinking styles, different note-taking styles. All
Windows text editors, irrespective of their features,
still look like Windows programs at some level. In
a notebook, there’s little to no reformatting; “undo”
consists of crossing out a line or a page and starting
over or, perhaps more appropriately, of tolerating
imperfection. When it’s a paper notebook, and it’s
your own, there’s a little less pressure to make
things look good. For me, this allows for a more
free flow of ideas.

In 2005, James and Jonathan Bach presented a
paper at the STAR West conference on exploratory

6 http://www.iht.com/articles/2004/10/16/mmole_ed3_.php
7 http://www.testingeducation.org/BBST/exams/NotesForStudents.htm

dynamics, skills and tactics. Michael Kelly led a session in which we further developed this list
at Consultants’ Camp 2006.

Several of the points in this list—especially modeling, questioning, chartering, observing,
generating and elaborating, abandoning and recovering, conjecturing, and of course recording
and reporting—can be aided by the kinds of things that we do in notebooks: writing, sketching,
listing, speculating, brainstorming, and journaling. Much of what we think of as history or
scientific discovery was first recorded in notebooks. We see a pattern of writing and keeping
notes in situations and disciplines where learning and discovery are involved. A variety of
models helps us to appreciate a problem (and potentially its solution) from more angles.
Thinking about a problem is different from uttering it, which is still different from sketching it or
writing prose about it. The direct interaction with the ink and the paper gives us a tactile mode to
supplement the visual, and the fact that handwriting is, for many people, slower than typing, may
slow down our thought processes in beneficial ways. A notebook gives us a medium in which to
record, re-model, and reflect. These are, in my view, essential testing skills and tactics.

From a historical perspective, we are aware that Leonardo was a great thinker because he left
notebooks, but it’s also reasonable to consider that Leonardo may have been a great thinker at
least in part because he used notebooks.

Who Uses Notebooks?
Inventors, scientists, explorers, artists, writers, and students have made notebook work part of
their creative process, leaving both themselves and us with records of their thought processes.

Leonardo da Vinci’s notebooks are among the most famous books in history, and also at this
writing the most expensive; one of them, the Codex Leicester, was purchased in 1994 for $30.8
million by a certain ex-programmer from the Pacific Northwest8. Leonardo left approximately
13,000 pages of daily notes and drawings. I was lucky enough to see one recently—the Codex
Foster, from the collection of the Victoria and Albert Museum.

8 Incidentally, the exhibit notes and catalog suggested that Leonardo didn’t intend to encrypt his work via the mirror
writing for which he was so famous; he wrote backwards because he was left-handed, and writing normally would
smudge the ink.

Figure 2: Leonardo da Vinci, The Codex Foster

As a man of the Renaissance, Leonardo blurred the lines between artist, scientist, engineer, and
inventor9, and his notebooks reflect this. Leonardo collects ideas and drawings, but also puzzles,
aphorisms, plans, observations. They are enormously eclectic, reflecting an exploratory outlook
on the world. As such, his notebooks are surprisingly similar to the notebook patterns of
exploratory testers described below, though none has consciously followed Leonardo’s
paradigms or principles, so far as I know. The form factor is also startlingly similar to the
smaller Moleskine notebooks. Obviously, the significance of our work pales next to Leonardo’s,
but is there some intrinsic relationship between exploratory thinking and the notebook as a
medium?

What Do I Use My Notebook For?
I’ve been keeping three separate notebooks. My large-format book contains notes that I take
during sessions at conferences and workshops. It tends to be tidier and better-organized. My
small-format book is a ready place to record pretty much anything that I find interesting. Here
are some examples:

Lists of things, as brainstorms or catalogs. My current lists include testing heuristics;
reifications; and test ideas. These lists are accessible and can be added to or referenced at any
time. This is my favorite use of the Moleskine—as a portable thinking and storage tool.

“Fieldstones” and blog entries. Collections of observations; the odd rant; memorable quotes;
aphorisms. The term “fieldstone” is taken from Gerald M. Weinberg’s book Weinberg on
Writing: The Fieldstone Method. In the book, Jerry uses the metaphor of the pile of stones that
are pulled from the field as you clear it; then you assemble a wall or a building from the
fieldstones.10 I collect ideas for articles and blog entries and develop them later.

9 How To Think Like Leonardo da Vinci
10 Weinberg, Gerald M., Weinberg on Writing: The Fieldstone Method.

Logs of testing sessions. These are often impromptu, used primarily to practice testing and
reporting, to reflect and learn later, and to teach the process. A couple of examples follow
below.

Meeting notes. He who controls the minutes controls history, and he who controls history
controls the world.

Ultra-Portable PowerPoints. These are one-page presentations that typically involve a table or
a diagram. This is handy for the cases in which I’d like to make a point to a colleague or client.
Since the listener focuses on the data and on my story, and not on what Edward Tufte11 calls
“chartjunk”, the portable PowerPoints may be more compelling than the real thing.

Mind maps and diagrams. I use these for planning and visualization purposes. I need to
practice them more. I did use a mind map to prepare this presentation.

Notes collected as I’m teaching. When a student does something clever during a testing
exercise, I don’t want to interrupt the flow, but I do want to keep track of it so that I can recount
it to the class and give recognition and appreciation to the person who did it. Moreover, about
half the time this results in some improvement to our course materials12, so a notebook entry is
very handy.

Action items, reminders, and random notes. Sometimes the notebook is the handiest piece of
paper around, so I scribble something down on a free page—contact names (for entry later),
reminders to send something to someone; shopping lists.

Stuff in the pocket. I keep receipts and business cards (so I don’t lose them). I also have a
magic trick that I use as a testing exercise that fits perfectly into the pocket.

I try to remember to put a title and date on each page. Lately I’ve been slipping somewhat,
especially on the random notes pages.

I’ve been using a second large-format notebook for notes on books that I’m studying. I haven’t
kept this up so well. It’s better organized than my small format book, but my small format book
is handy more often, so notes about books—and quotes from them—tend to go in that.

I’m not doing journaling, but the notebooks seem to remind me that, some day, I will. Our
society doesn’t seem to have the same diary tradition as it used to; web logs retrieve this idea.
Several of my colleagues do keep personal journals.

How Do Other Exploratory Testers Use Notebooks?
I’ve done a very informal and decidedly unscientific survey of some of my colleagues, especially
those who are exploratory testers.

11 Tufte, Edward, Envisioning Information. Graphics Press, Chesire, Connecticut, 1990.
12 Bach, James, and Bolton, Michael, Rapid Software Testing. http://www.satisfice.com/rst.pdf.

Adam White reports, “My notebook is my life. It's how I keep track of things I have to do. It
supplements my memory so that I don't waste brain power on remembering to remember
something. I just record it and move on.

“I have found a method of taking notes that brings my attention to things. If someone tells me
about a book then I will write "Book" and underline it twice. Then when flipping back through
my notes I can see that I have a reference to a book that I thought was interesting at some point
in time. I use this process for other things like blogs, websites, key ideas, quotes etc. It makes
organizing information after the fact very easy.”

Adam reports similar experiences to my own in how he came to use Moleskines. He too
observed Jon Bach and James Bach using Moleskine notebooks; he too uses a selection of
books—one large-form for work, one large-form for personal journaling, and a small one for
portability and availability. He also says that the elastic helps to prevent him from losing pens.

Jonathan Kohl also reports that he uses notebooks constantly. “My favorite is my Moleskine, but
I also use other things for taking notes. With my Moleskine, I capture test ideas; article ideas;
diagrams or models I am working on for articles; teaching materials, or some other reason for an
explanation to others; and testing notes13. I have a couple of notes to help focus me, and the rest
are ideas, impressions, and the starred items are bugs. I translated the bugs into bug reports in a
fault tracking system, and the other notes into a document on risk areas. For client work, I don't
usually use my Moleskine for testing, since they may want my notes.” This is an important point
for contractors and full-time employees; your notebook may be considered a work product—and
therefore the property of your company—if you use it at work, or for work.

“I also use index cards (preferably post-it note index cards), primarily for bug reports,” continues
Jonathan. “My test area is often full of post-its, each a bug, at the end of a morning or afternoon
testing session. Over time, I arrange the post-its according to groups, and log them into a bug
tracker or on story cards (if doing XP.) When I am doing test automation/test toolsmith work, I
use story cards for features or other tasks, and others for bugs.”

Jonathan also uses graph-paper pads for notes that he doesn't need to keep. They contain rough
session and testing notes; diagrams, scrawls, models, or things that he is trying to understand
better; analysis notes, interview points, and anything else he’s interested in capturing. “These
notes are illegible to most people other than me, and I summarize them and put what is needed
into something more permanent.” This is also an important point about documentation in
general: sometimes documentation is a product—a deliverable, or something that you show to or
share with someone else. At other times, documentation is a tool—a personal aid to memory or
thought processes.

“I worked with engineers a lot starting out, so I have a black notebook that I use to record my
time and tasks each day. I started doing this as an employee, and do it as a consultant now as
well.”

Fiona Charles also keeps a project-specific notebook. She uses a large form factor, so that it can
accommodate 8½ x11 pages pasted into it. She also pastes a plastic pocket, a calendar, and loose
notes from pre-kickoff meetings—she says that a glue stick is an essential part of the kit. In the

13Jonathan provides an example at http://www.kohl.ca/articles/ExploratoryTesting_MusicofInvestigation.pdf

notebook, she records conversations with clients and others in the project community. She uses
clear termination line for dates, sets of notes, and “think pages.”

Jerry Weinberg also uses project notebooks. On the first page, he places his name, his contact
information, and offer of a reward for the safe return of the book. On the facing page, he keeps a
list of contact info for important people to the project. On the subsequent pages, he keeps a daily
log from the front of the book forwards. He keeps a separate list of learnings from the back of
the book backward, until the two sections collide somewhere in the middle; then he starts a new
book. “I always date the learnings,” he says. “In fact, I date everything. You never know when
this will be useful data.” Like me, he never tears a page out.

Jerry is also a strong advocate of journaling14. For one thing, he treats starting journaling—and
the reader’s reaction to it—as an exercise in learning about effecting change in ourselves and in
other people. “One great advantage of the journal method,” he says, “is that unlike a book or a
lecture, everything in it is relevant to you. Because each person’s learning is personal, I can’t
you what you’ll learn, but I can guarantee that you’ll learn something.” That’s been my
experience; the notebook reflects me and what I’m learning. It’s also interesting to ask myself
about the things, or kinds of things, that I haven’t put it.

Jon Bach reports that he uses his notebooks in several modes. “‘Log file’, to capture the flow of
my testing; ‘epiphany trap’, to capture "a ha!" moments (denoted by a star with a circle around
it); diagrams and models—for example, the squiggle diagram when James and I first roughed out
Session-Based Test Management; to-do lists—lots and of lots them, which eventually get put
into Microsoft Outlook's Task Manager with a date and deadline—reminders, flight, hotel, taxi
info when traveling, and phone numbers; quotes from colleagues, book references, URLs; blog
ideas, brainstorms, ideas for classes, abstracts for new talks I want to do; heuristics, mnemonics;
puzzles and their solutions (like on a math exam that says "show your work"); personal journal
entries (especially on a plane); letters to my wife and child -- to clear my head after some
heinous testing problem I might need a break from.”

Jon also identifies as significant the paradigm “‘NTSB Investigator.’ I'll look back on my old
notes for lost items to rescue—things that are may have become more important than when I first
captured them because of emergent context. You would never crack open the black box of an
airplane after a successful flight, but what if there was a systemic pattern of silent failures just
waiting to culminate in a HUGE failure? Then you might look at data for a successful flight and
be on the lookout for pathologies.”

Example: An Impromptu Exploratory Testing Session
I flew from Delhi to Amsterdam. I was delighted to see that the plane was equipped with a
personal in-flight entertainment system, which meant that I could choose my own movies or TV
to watch. As it happened, I got other entertainment from the system that I wouldn’t have
predicted.

The system was menu-driven. I went to the page that listed the movies that were available, and
after scrolling around a bit, I found that the “Up” button on the controller didn’t work. I then
inspected the controller unit, and found that it was cracked in a couple of places. Both of the

14 Becoming a Technical Leader, pp. 80-85

cracks were associated with the mechanism that returned the unit, via a retractable cord, to a
receptacle in the side of the seat. I found that if I held the controller just so, then I could get
around the hardware—but the software failed me. That is, I found lots of bugs. I realized that
this was an opportunity to collect, exercise, and demonstrate the sorts of note-taking that I might
perform when I’m testing a product for the first time. Here are the entries from my Moleskine,
and some notes about my notes.

When I take notes like this,
they’re a tool, not a product. I
don’t expect to show them to
anyone else; it’s a possibility, but
the principal purposes are to
allow me to remember what I did
and what I found, and to guide a
discussion about it with someone
who’s interested.

I don’t draw well, but I’m slowly
getting better at sketching with
some practice. I find that I can
sketch better when I’m willing to
tolerate mistakes.

In the description of the red block, at the top of the left page, I failed to mention that this red
block appeared when I went right to the “What’s On” section after starting the system. It didn’t
reproduce.

Whenever I look back on my notes, I recognize things that I missed. If they’re important, I write
them down as soon as I realize it. If they’re not important, I don’t bother. I don’t feel bad about
it either way; I try always to get better at it, but testers aren’t omniscient. Note “getting
sleepy”—if I keep notes on my own mental or emotional state, they might suggest areas that I
should revisit later. One example here: on the first page of these notes, I mentioned that I
couldn’t find a way to contact the maker of the entertainment system. I should have recognized
the “Feedback” and “Info” menu items, but I didn’t; I noticed them afterwards.

After a few hours of
rest, I woke up and
started testing again.

Jon Bach recently
pointed out to me that,
in early exploration, it’s
often better to start not
by looking for bugs, but
rather by trying to build
a model of the item
under test. That
suggests looking for the
positives in the product,
and following the happy
path. I find that it’s
easy for me to fall into
the trap of finding and
reporting bugs. These

notes reflect that I did fall into the trap, but I also tried to check in and return to modeling from
time to time. At the end of this very informal and completely freestyle session, I had gone a long
way towards developing my model and identifying various testing issues. In addition, I had
found many irritating bugs.

Why perform and record
testing like this? The
session and these notes,
combined with a
discussion with the
project owner, might be
used as the first iteration
in the process of
determining an overall
(and perhaps more
formal) strategy for
testing this product. The
notes have also been a
useful basis for my own
introspection and critique

of my performance, and to show others some of my though process through an exploratory
testing session.

A More Formal Structure for Exploratory Testing
Police forces all over the world use notebooks of some description, typically in a way that is
considerably more formalized. This is important, since police notebooks will be used as
evidence in court cases. For this reason, police are trained and required to keep their notebooks
using elements of a more formal structure, including time of day; exact or nearest-to location; the
offence or occurrence observed; the names and addresses of offenders, victims or witnesses;
action taken by the officer involved (e.g. arrests), and details of conversations and other
observations. (The object of the exercise here is not to turn testers into police, but to take useful
insights from the process of more formal note-taking.)

How can we help to make testing similarly accountable? Session-Based Test Management
(SBTM), invented by James and Jonathan Bach in 2000 is one possible answer. SBTM has as its
hallmark four elements:

• Charter
• Time Box
• Reviewable Result
• Debriefing

The charter is a one- to three-sentence mission for a testing session. The charter is designed to
be open-ended and inclusive, prompting the tester to explore the application and affording
opportunities for variation. Charters are not meant to be comprehensive descriptions of what
should be done, but the total set of charters for the entire project should include everything that is
reasonably testable.

The time box is some period of time between 45 minutes and 2 ¼ hours, where a short session is
one hour (+/- 15 minutes), a long session is two, and a normal session is 90 minutes. The
intention here is to make the session short enough for accurate reporting, changes in plans (such
as a session being impossible due to a broken build, or a session changing its charter because of a
new priority), but long enough to perform appropriate setup, to get some good testing in, and to
make debriefing efficient. Excessive precision in timing is discouraged; anything to the nearest
five or ten minutes will do. If your managers, clients, or auditors are supervising you more
closely than this,

The reviewable result takes the form of a session sheet, a page of text (typically ASCII) that
follows a formal structure. This structure includes:

• Charter
• Coverage areas (not code coverage; typically product areas, product elements, quality

criteria, or test techniques)
• Start Time
• Tester Name(s)
• Time Breakdown

• session duration (long, normal, or short)

• test design and execution (as a percentage of the total on-charter time)
• bug investigation and reporting (as a percentage of the total on-charter time)
• session setup (as a percentage of the total on-charter time)
• charter/opportunity (expressed as a percentage of the total session, where opportunity

time does not fit under the current charter, but is nonetheless useful testing work)
• Data Files
• Test Notes
• Bugs (where a “bug” is a problem that the tester and the test manager reasonably believe

represents a threat to the value of the product)
• Issues (where an “issue” is a problem that threatens the value of the testing process—missing

information, tools that are unavailable, expertise that might be required, questions that the
tester might develop through the course of the session)

There are two reasons for this structure. The first is simply to provide a sense of order and
completeness for the report and the debrief. The second is to allow a scripting tool to parse
tagged information from the session sheets, such that the information can be sent to other
applications for bug reporting, coverage information, and inquiry-oriented metrics gathering.
The SBTM package, available at http://www.satisfice.com/sbtm, features a prototype set of batch
files and Perl scripts to perform these tasks, with output going to tables and charts in an Excel
spreadsheet.

The debrief is a conversation between the tester15 who performed the session and someone
else—ideally a test lead or a test manager, but perhaps simply another tester. In the debrief, the
session sheet is checked to make sure that it’s readable and understandable; the manager and the
tester discuss the bugs and issues that were found; the manager makes sure that the protocol is
being followed; and coaching, mentoring, and collaboration happen. A typical debrief will last
between five to ten minutes, but several things may add to the length. Incomplete or poorly-
written session sheets produced by testers new to the approach will prompt more questions until
the tester learns the protocol. A highly complex or risky product area, a large number of bugs or
issues, or an unfamiliar product may also lead to longer conversations.

Several organizations have reported that scheduling time for debriefings is difficult when there
are more than three or four testers reporting to the test manager or test lead, or when the test
manager has other responsibilities. In such cases, it may be possible to have the testers debrief
each other.

At one organization where I did some consulting work, the test manager was also responsible for
requirements development and business analysis, and so was frequently unavailable for
debriefings. The team chose to use a round-robin testing and debriefing system. For a given
charter, Tester A performed the session, Tester B debriefed Tester A, and at regression testing
time, Tester C took a handful of sheets and used them as a point of departure for designing and
executing tests. For the next charter, Tester B performed the testing, Tester C the debrief, and
Tester A the regression; and so forth. Using this system, each tester learned about the product
and shared information with others by a variety of means—interaction with the product,
conversation in the debrief, and written session sheets. The entire team reported summaries of

15 Or “testers”; SBTM can be used with paired testers.

the debriefings to the test manager when he was not available, and simply debriefed directly with
him when he was.

Two example session sheets follow. The first is an account of an early phase of exploratory
testing, in which the testers have been given the charter to create a test coverage outline and a
risk list. These artifacts themselves can be very useful, lightweight documents that help to guide
and assess test strategy. Here the emphasis is on learning about the product, rather than searching
for bugs.

The second is an account of a later stage of testing, in which the tester has sufficient knowledge
about the product to perform a more targeted investigation. In this session, he finds and reports
several bugs and issues. He identifies moments at which he had new test ideas and the
motivations for following the lines of investigation.

Example: Session Sheet for a Reconnaissance Session

Sessions in which 100% of the time is spent on test design and execution
are rare. This reconnaissance session is an exception; the focus here is on
learning, rather than bug-finding.

SBTM lends itself well to paired testing. Two sets of eyes together often
find more interesting information—and bugs—than two sets of eyes on
their own.

Any data files generated or used during the session—in the form of
independent reports, program input or output files, screen shots, and so on—
get stored in a directory parallel to the library of session sheets.

Test coverage is not merely code coverage. Functional areas, platforms,
data, operations, and test techniques, are only a few ways to model the test
space; the greater the number and variety of models, the better the
coverage.

A test coverage outline is a useful artifact with which to guide and assess a test
strategy (the set of ideas that guide your test design), especially one which we’re
using exploratory approaches. A test coverage outline can be used as one of the
inputs into the design of session charters.

A risk list is another useful tool to help guide a test strategy. The
risk list can be as long or as short as you like; it can also be broken
down by product or coverage areas.

“Issues” are problems that threaten the value of the
testing process. Issues may include concerns, requests for
missing information, a call for tools or extra resources,
pleas for testability. In addition, if a tester is highly
uncertain whether something is a bug, that can be
reported here.

Example: Session Sheet for a Bug-Finding Session

Information generated from the session sheets can be fed back into the estimation process.

• First, we’ll cast a set of charters representing the coverage that we’d like to obtain in a given

test cycle. (Let’s say, for this example, 80 charters).
• Second, we’ll look at the number of testers that we have available. (Let’s say 4.)
• Typically we will project that a tester can accomplish three sessions per day, considering that

a session is about 90 minutes long, and that time will be spent during the day on email,
meetings, breaks, and the like.

• We must also take into account the productivity of the testing effort. Productivity is defined
here the percentage of the tester’s time spent, in a given session, on coverage—that is, on test

A single session can cover more than one functional area of
the product. Here the testers obtain coverage on both the
QuickBuild wizard and the report generator

The goal of any testing session is to obtain coverage—test design and
execution, in which we learn good and bad things about the product.
Bug investigation (learning things about a particular bug) and setup
(preparing to test), while valuable, are interruptions to this primary
goal. The session sheet tracks these three categories as inquiry
metrics—metrics that are designed to prompt questions, rather than to
drive decisions. If we’re doing multiple things at once, we report the
highest-priority activity first; if it happens that we’re testing as we’re
investigating a bug or setting up, we account for that as testing.

Test notes tend to be more valuable when they include the motivation for a given test,
or other clues as to the tester’s mindset. The test notes—the core of the session sheet—
help us to tell the testing story: what we tested, why we tested it, and why we believe
that our testing were good enough.

design and execution. Bug investigation is very important, but it reduces the amount of
coverage that we can obtain about the product during the session. It doesn’t tell us more
about the product, even though it may tell us something useful about a particular bug.
Similarly, setup is important, but it’s preparing to test, rather than testing; time spent on
setup is time that we can’t spend obtaining coverage. (If we’re setting up and testing at the
same time, we account for this time as testing. At the very beginning of the project, we
might estimate 66% productivity, with the other third of the time spent on setup and bug
investigation. This gives us our estimate for the cycle:

80 charters x .66 productivity x 4 testers x 3 sessions per day = 10 days

Exploratory testing, by
intention, reduces
emphasis on specific
predicted results, in order
to reduce the risk of
inattentional blindness.
By giving a more open
mandate to the tester, the
approach affords better
opportunities to spot
unanticipated problems.

New test ideas come up all the time in an
exploratory testing session. The tester is
empowered to act on them right away.

“Opportunity” work is
testing done outside the
scope of the current charter.
Again, testers are both
empowered and encouraged
to notice and investigate
problems as they find them,
and to account for the time
in the session sheet.

“Some options” might be vague here; more likely,
based on our knowledge of the tester, the specific
options are be unimportant, and thus it might be
wasteful and even misleading to provide them. The
tester, the test manager, and product team develop
consensus through experience and mentoring on how to
note just what’s important, no less and no more.

The #BUG tag allows a text-processing tool to transfer
this information to a master bug list in a bug tracking
system, an ASCII file, or an Excel spreadsheet.

When new information comes in—often in the form of new productivity data—we change one or
more factors in the estimate, typically by increasing or decreasing the number of testers,
increasing or reducing the scope of the charters, or shortening or lengthening the cycle.

Some questions have been raised as to whether exploratory approaches like SBTM are
acceptable for high-risk or regulated industries. We have seen SBTM used in a wide range of
contexts, including financial institutions, medical imaging systems, telecommunications, and
hardware devices.

Some also question whether session sheets meet the standards for the accountability of bank
auditors. One auditor’s liaison with whom I have spoken indicates that his auditors would not be
interested in the entire session sheet; instead, he maintained, “What the auditors really want to

Listing all of the possible
expectations for a given test
is impossible and pointless;
listing expectations that
have been jarred by a
probable bug is more
efficient and more to the
point.

A step-by-step sequence to
perform a test leads to
repetition, where variation is
more likely to expose
problems. A step-by-step
sequence to reproduce a
discovered problem is more
valuable.

see is the charter, and they want to be sure that there’s been a second set of eyes on the process.
They don’t have the time or the inclination to look at each line in the Test Notes section.”

Conclusion
Notebooks have been used by people in the arts, sciences, and skilled professions for centuries.
Many exploratory testers may benefit from the practice of taking notes, sketching, diagramming,
and the like, and then using the gathered information for retrospection and reflection.

One of the principal concerns of test managers and project managers with respect to exploratory
testing is that it is fundamentally unaccountable or unmanageable. Yet police, doctors, pilots,
lawyers and all kinds of skilled professions have learned to deal with problem of reporting
unpredictable information in various forms by developing note-taking skills. Seven years of
positive experience with session-based test management suggests that it is a useful approach, in
many contexts, to the process of recording and reporting exploratory testing.

Thanks to Launi Mead and Doug Whitney for their review of this paper.

