
Copyright © Satisfice and DevelopSense 2018

Refactoring the Agile Testing Quadrants
Michael Bolton
DevelopSense

http://www.developsense.com
@michaelbolton

michael@developsense.com

James Bach
Satisfice

http://www.satisfice.com
@jamesmarcusbach
james@satisfice.com

Refactoring the Agile Testing Quadrants - 1

Given, When, Then
GIVEN that I am a human being
AND a passionate, committed tester
WHEN people talk about Agile Software Development
AND reduce it to a bunch of formulaic keywords
AND reduce testing to mechanistic checking
AND reduce “qualifications” to multiple choice questionnaires
AND dismiss deep, skilled, rich, inexpensive, fast testing
AND don’t help to make life better for people
THEN I get upset
AND I have too much to talk about in only one hour

Refactoring the Agile Testing Quadrants - 2

Copyright © Satisfice and DevelopSense 2018

Why I’m becoming a grumpy old guy:
Increasingly, testing is confused with “checking builds”.
Our fixation on “test automation” is causing us to lose
connection with the human, social purposes of software
development and testing.
Tools are great. We should use them. We should use them
a lot to help us develop an understanding of our products.
Tools can help us to be powerful.
But what I’m seeing at conferences and in talk about testing
often looks like elaborate attempts to avoid making contact
with the software, our clients, our customers, and our mission.

Refactoring the Agile Testing Quadrants - 3

Our Problems with the Agile Testing Quadrants: A History
• James encountered the quadrants first in 2003 or so, when Brian

Marick explained them to him; I started to hear about them shortly
after that.

• I participated in the Agile Testing Mailing list, which seemed to exalt
processes and tools, but not talk about testing very much.
• There was lots of talk about checking, but they didn’t call it that―but in

fairness, back then, I didn’t either.
• I abandoned the list in 2008 or so, after I got tired of what I felt was

misrepresentation and dumbing-down of testing.
• I feel that the quadrants helped, and still help, to feed that

misrepresentation.
• We have learned much more about (agile) testing and how to discuss

it since the quadrants first arrived. It’s time for a major refactoring.

Refactoring the Agile Testing Quadrants - 4

Copyright © Satisfice and DevelopSense 2018

Marick’s Original

See http://www.exampler.com/old-blog/2003/08/21/,
http://www.exampler.com/old-blog/2003/08/22/#agile-testing-project-2,

and subsequent posts.
Refactoring the Agile Testing Quadrants - 5

Crispin & Gregory’s (Earlier) Version

See Crispin & Gregory, Agile Testing
Refactoring the Agile Testing Quadrants - 6

Copyright © Satisfice and DevelopSense 2018

Supporting Programming or the Team?
• Marick’s original and his comments on it frame simple output checks as

more “integral” to the programming process than vigorous testing.
• Maybe he was talking about lower critical distance; okay.

Refactoring the Agile Testing Quadrants - 7

Critical Distance and Social Distance
By critical distance we mean
A difference between two ways of thinking about some thing,
or an absence of knowledge about some thing in favor of other things.

By social distance we mean
any barrier to or absence of harmony and
cooperation among people.

Cultivate critical distance.
Eliminate social distance.

Refactoring the Agile Testing Quadrants - 8

Copyright © Satisfice and DevelopSense 2018

Supporting Programming or the Team?
• Marick’s original and his comments on it frame simple output checks as

more “integral” to the programming process than vigorous testing.
• Maybe he was talking about lower critical distance; okay.
• Nonetheless, let’s treat programming and testing all as connected

together, in super-rapid feedback loops. It’s agile development, right?
• The Crispin & Gregory version implies that critique is not supporting the

team, or not the work of programming.
• Testing—criƟquing the product―IS supporƟng the team!
• Programmers can provide powerful and valuable critique!

• It also implies that that testers do not belong in Agile unless they are
programmers; unless they write code.
• Testers may or may not write code, use particular tools, or apply

particular skills. Context matters. The mission matters.
Refactoring the Agile Testing Quadrants - 9

Automated, Manual, Tools… Wait… Huh?
• Tools are not remarkable in testing. Good testers use them anywhere,

everywhere, for lots of purposes.
• There is no such thing as “manual” or “automated” testing, just as

there isn’t “manual” or “automated” programming.
• See http://www.developsense.com/blog/2013/02/manual-and-automated-testing/

• There may be useful distinctions in the means by which we interact
with the product — say, via the GUI, via APIs, or debuggers.

• It may be relevant to consider how naturalistic our interaction is.
• We might focus on user tasks, and operate the product at the surface, as users

do. But we might also do things that No User Would Ever Do
• It may be relevant to account for what, specifically, we’re observing

and examining.
• Are we looking at the whole system, or only at components of it?

Refactoring the Agile Testing Quadrants - 10

Copyright © Satisfice and DevelopSense 2018

Reification (turning tests into things)
• Test cases are not tests; examples are not tests.
• Tests are not artifacts; they’re performances.
• The most important parts of testing (tacit knowledge, social

judgment, context awareness) cannot be scripted or encoded.
• It is pointless to discuss whether “business people” can “read the

tests” because what they can read are not tests – they are partial
representations of testing activity (or else they are checks).

• Trying to communicate testing primarily through writing or code
(processes and tools; contracts; comprehensive documentation)
is inconsistent with important Agile principles.
• Instead: prefer conversation and demonstration of testing work

Refactoring the Agile Testing Quadrants - 11

Crispin & Gregory’s (Newer) Version

See Crispin & Gregory, More Agile Testing
Refactoring the Agile Testing Quadrants - 12

Copyright © Satisfice and DevelopSense 2018

Why you might like the quadrants:

Because they represent a generic
diversified test strategy!

Refactoring the Agile Testing Quadrants - 13

Crispin & Gregory v2: some progress, but…
• The second version omits and therefore successfully avoids the

automated/manual/tools problem. That’s a definite improvement.
• “Guiding development” is still odd, seeming to put the testing cart

before the design, programming, and management horse.
• Both versions pin certain techniques and approaches to certain

quadrants in ways that seem confusing.
• Isn’t TDD a form of exploratory development?
• Is testing connectivity a first-quadrant activity?
• Can we not test component using an exploratory approach?
• “Business oriented” systems integration is listed, but “technology oriented”

systems integration is missing. Shouldn’t that warrant a mention?
• Aren’t “-ilities” (capability, reliability, testability…) relevant everywhere?
• Is security testing technology facing? Isn’t it business facing?

Refactoring the Agile Testing Quadrants - 14

Copyright © Satisfice and DevelopSense 2018

Dimensions of Crispin/Gregory
“Agile Testing Quadrants” Based on Marick

Refactoring the Agile Testing Quadrants - 15

Let’s refactor those in terms of what the business wants.

This is how the
business gets

something it wants.

This is how we find
out whether the

business really got
what it wanted.

This is how the business
plans to keep customers
happy and make money.

This helps make the
business sustainable.

Refactoring the Agile Testing Quadrants - 16

Copyright © Satisfice and DevelopSense 2018

So “facings” are beside the point.
• THE BUSINESS needs us to produce something of value.
• THE BUSINESS needs us to do that efficiently.
• THE BUSINESS needs to learn what it values over time rather than

guessing at the beginning of the project and freezing those guesses.
Hence, the core heuristic of agile: continually re-focus on
value (in order to produce value) and develop software in ways that
reduce the cost of change (rather than reduce the need for change).
• So: “technology-facing” simply means doing things that help us to

build the product and to build with change in mind – an activity our
business clients need but typically do not directly care about (or
sometimes even know about.)

• That’s cool, because the business hires us, as technical experts, to
take care of that stuff for them. That’s the service we provide!

Refactoring the Agile Testing Quadrants - 17

In the Beginning… the Universal Development Cycle…

Refactoring the Agile Testing Quadrants - 18

Copyright © Satisfice and DevelopSense 2018

Aiieee!
Look at all the bugs!

“Traditional” Development Cycle

Almost
all of it.

After the first long
loop, a very few

short, panicky ones.

Make development
ponderous—slow and

expensive.

Refactoring the Agile Testing Quadrants - 19

Plus: testing as an assembly line?

Copyright © Satisfice and DevelopSense 2018

Then Came
Agile Software Development

Huzzah!
Refactoring the Agile Testing Quadrants - 21

Manifesto for Agile Software Development
We are uncovering better ways of developing software

by doing it and helping others do it.

Through this work we have come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.

http://www.agilemanifesto.org

Uncovering is right!
These things got
covered up over

30 years!

Refactoring the Agile Testing Quadrants - 22

Copyright © Satisfice and DevelopSense 2018

1. Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout
the project.

5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done.

6. The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

Principles of Agile Software Development

Refactoring the Agile Testing Quadrants - 23

Principles of Agile Software Development
7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace
indefinitely.

9. Continuous attention to technical excellence and good design
enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is
essential.

11. The best architectures, requirements, and designs emerge from
self–organizing teams.

12. At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Refactoring the Agile Testing Quadrants - 24

Copyright © Satisfice and DevelopSense 2018

Agile Development Cycle

Discover problems and
fix them right away.

Almost
NONE of it.

Lots of short loops so
we don’t get ahead

of ourselves.

Recognize that we’ll
make SOME mistakes.

Refactoring the Agile Testing Quadrants - 25

What does it really mean
to do “Agile Development”?

• Deliver often (so the product can be evaluated)
• Collaborate across roles
• Develop craftsmanship
• Don’t be too formal
• Be prepared to try things, to fail, and learn
• Build and use tools expertly
• Seek a sustainable pace

Refactoring the Agile Testing Quadrants - 26

Copyright © Satisfice and DevelopSense 2018

Two Cheers for Agile Software Development!
Agile Software Development was possibly the most
humanist approach to software development in at least
30 years…

And then (almost immediately) came…
• tribes (craftspeople, empaths, and stickynoters)
• marketers and certifiers
• confusion about testing
• confusion about tests
• confusion about agility

Refactoring the Agile Testing Quadrants - 27

Some Problems With “Agile” Software Development
• Agile’s earliest roots are in eXtreme Programming (XP), which

was extremely focused on programmers. (This was much more a
feature, and much less a bug.)

• A bug: in many places, “Agile testing” became dominated by
things in programmers’ mindsets: unit testing, functional
correctness, solving problems with code, “definition of done”...

• And, in many places, testing became confused with output
checking...

• …yet there can be many problems in the relationships between
people and the product.

• We don’t know where those problems are… and that’s where
risk lives.

Refactoring the Agile Testing Quadrants - 28

Copyright © Satisfice and DevelopSense 2018

So what would testing look like in Agile contexts?
Focus on the skill set and the
mindset of the individual tester

Eliminate wasteful documentation;
emphasize investigation and learning

Answer the needs of the client and
the team

Respond rapidly to the ever-
changing mission of testing.

Individuals and interactions
over processes and tools

Working software over
comprehensive documentation

Customer collaboration
over contract negotiation

Responding to change
over following a plan

Refactoring the Agile Testing Quadrants - 29

The Agile Development Cycle

Defocusing Envisioning
Success

Anticipating
Failure Focusing

High Value of the Product

Low Cost of Development
“Continuous attention to technical excellence and good design enhances agility.”

“Our highest priority is to satisfy the customer through early & continuous delivery of valuable software.”

Refactoring the Agile Testing Quadrants - 30

Copyright © Satisfice and DevelopSense 2018

Four Testing Questions

Are we building
what we think
we’re building?

Do we know how this
thing should work?

What must we do to
be ready to test
efficiently?

Do we know about
every important bug?

Refactoring the Agile Testing Quadrants - 31

Four Frames for Testing

Refactoring the Agile Testing Quadrants - 32

Copyright © Satisfice and DevelopSense 2018

Intention: Developing the Design
• Establishing quality criteria
• Engaging with diverse users
• Specifying product with (not “by”) rich examples
• Reviewing reports from the field
• Exploring design trade-offs
• Refining user stories

The whole team is
involved here

Refactoring the Agile Testing Quadrants - 33

Discipline: Building Cleanly and Simply
• Automating low-level checks
• Establishing and adhering to a shared coding style
• Investigating and fixing bugs as we go
• Reviewing each other's code
• Integrating the product frequently
• Refactoring for maintainability

Mostly developer
work… but testers can

certainly assist
Refactoring the Agile Testing Quadrants - 34

Copyright © Satisfice and DevelopSense 2018

Preparation: Fostering Testability
• Preparing test environments and tools
• Designing for intrinsic testability
• Testing in parallel with coding
• Providing access to all levels of the product
• Minimizing trouble when changing the product
• Removing obstacles and distractions to testing

Strong developer-tester
collaboration

Refactoring the Agile Testing Quadrants - 35

Realization: Experimenting Imaginatively and Suspiciously

• Skeptically assessing whether we’re “done”—or not done yet.
• Modelling systems in diverse ways—beyond Given, When, Then
• Developing rich test data—challenging the product
• Focusing testing and checking on suspected risk
• Investigating mysteries—aiding the developers
• Telling compelling bug stories—studying testing and risk

Deep testing work that
(probably) requires some

dedicated testers.
Refactoring the Agile Testing Quadrants - 36

Copyright © Satisfice and DevelopSense 2018

And although these dimensions have a roughly clockwise sequence…

Refactoring the Agile Testing Quadrants - 37

…development isn’t linear. Not even just loopy.

Development is a fractal!
Refactoring the Agile Testing Quadrants - 38

Copyright © Satisfice and DevelopSense 2018

Testing is woven into development, at every level.

Refactoring the Agile Testing Quadrants - 39

RST’s Agile Quadrants in Detail

Refactoring the Agile Testing Quadrants - 40

