
Copyright © 2010, DevelopSense http://www.developsense.com

1

of Software Testing

Michael Bolton
DevelopSense

Ireland
September 2010

Two Futures
of Software Testing

Sogeti Ireland

Delivery Partners

Thank you to our sponsors!

SoftTest Ireland
http://www.SoftTest.ie

InterTradeIreland

Delivery Partners

Thank you to our sponsors!

SoftTest Ireland
http://www.SoftTest.ie

HP Ireland

Delivery Partners

SoftTest Ireland
http://www.SoftTest.ie

Thank you to our sponsors!

HP Ireland

Delivery Partners

SoftTest Ireland
http://www.SoftTest.ie

Special thank you to today’s sponsors!

Software Quality Systems

Anne-Marie Charrett

Brian Lambert

Stephen Sloan

Nicola McManus

David Jamison

Delivery Partners

SoftTest Ireland
http://www.SoftTest.ie

…and thank you to the organizers!

Copyright © 2010, DevelopSense http://www.developsense.com

2

Who I Am

Michael Bolton
(not the singer, not the guy in Office Space)

DevelopSense, Toronto,
Canada

mb@developsense.com
+1 (416) 992-8378

http://www.developsense.com

Acknowledgements

• James Bach
• some of the material comes from the Rapid Software

Testing Course, of which James is the senior author
and I am co-author

• Cem Kaner
• Bret Pettichord
• Jerry Weinberg
• Jonathan Kohl
• Anne-Marie Charrett

of Software Testing

These are not the only two futures.
They’re offered for your consideration.

The choices are up to you.

These are not predictions.
These are proposals.

The Dark Future:
Testing ISN’T About Learning

• Testing is focused on confirmation,
verification, and validation

• There are prescribed tests; testers check to
make sure that prescribed tests pass

• Though we’re in a “knowledge economy”,
some knowledge can be unpleasant and
dangerous, thus…

• Exploration and investigation are luxuries at
best, threats at worst

The Dark Future:
Change is Rejected

• Nothing is more important than following
our plans and our processes strictly
• our clients will understand, of course
• if they want to change the requirements, we say they

should have known that from the beginning
• and if they don’t like that, we’ll call them names like

“immature” or “unprofessional”

• By insisting that requirements don’t
change, we can eradicate project risk

The Dark Future:
Measurement

• We measure
• requirements scope by counting requirements
• test coverage by counting test cases
• product quality by counting bugs
• the value of testers by counting bug reports
• developer output by counting lines of code
• complexity by counting code branches

Copyright © 2010, DevelopSense http://www.developsense.com

3

The Dark Future:
Measurement

• We don’t measure by
• qualitative measures
• direct observation
• interaction between testers and programmers
• conversation with actual users

• We don’t trust stories; only statistics
• We don’t worry about construct validity or

other problems in measurement

The Dark Future:
Automation is Paramount

• Machines are obviously better than people
• If testing is scripting and script is good,

then automated scripting is better
• By eliminating the human element, we can

eliminate variability and uncertainty
• Sure, high-level test automation takes time

and effort to prepare, therefore…
• …we must slow down development to let

“testing” catch up

The Dark Future:
Putting The Testers In Charge

• Testers are the quality gatekeepers
• Testers refuse to test until they have been

supplied with complete, unambiguous, up-
to-date requirements documents

• Testers “sign off” on project readiness
• Testers can block releases
• Testers are the real project managers

Not
The Dark Future:

Putting The Testers In Charge

• Although testers are called the quality
gatekeeper, they don’t have control over
• schedule
• budget
• staffing
• product scope
• market conditions or contractual obligations

The Dark Future:
Promoting Orthodoxy

• All testers must be certified
• by passing multiple choice exams

• All testers have the same skills
• testing doesn’t require skilled labour anyway

• Testers must be isolated from developers
• Investigation is banned; variation suppressed
• Testing is standardized across departments

and throughout the “industry”

Standardization
• There shall be One True Way to Test
• There shall be one universal language for

testing
• and since American and British consultants

promote it, it shall be English
• Agile approaches can still be made very

orthodox
• If we find it hard to apply standard

practices, we’ll say that we apply them

Copyright © 2010, DevelopSense http://www.developsense.com

4

The Dark Future:
Some Of Our Proudest Accomplishments

A bug is not a thing in the world. A bug is a relationship
between some product and some person. Bugs are by

their nature qualitative relationships, rather than
quantitative units. Beware measurement dysfunction.

The Dark Future:
Some Of Our Proudest Accomplishments

Test cases are like briefcases; they’re containers.
Counting containers without knowing what they contain is

measurement without observation.
The containers are the least interesting part of the story.

The Dark Future:
Some Of Our Proudest Accomplishments

Checking is very important and useful. But when test
results are reduced to nothing more than a green bar,

rather than the parallel, complex, and subtle product and
testing stories, we run the risk of leaving out critically

important information.

The Dark Future:
Some Of Our Proudest Accomplishments

It’s entirely possible, and even impressive, to deploy
software continuously. But it begs the question of why

you might want to do it, and the value that it adds.
Are fifty deployments a day too few? Too many?

So you can deploy… but what are you deploying?
And how do you know?

The Dark Future:
Pathologies

• Places knowledge and learning up front, at the
beginning of the project
• when we know the least about it!

• Learning through the project is ignored
• Testing is confused with checking
• Testing is considered to be rote, unskilled work
• Machines are valued over human cognition
• Tasks and tools are confused with each other
• Measurement is riddled with basic problems

• primarily reification error and rotten construct validity

The Dark Future:
Pathologies

• Testers implicitly run the project when it’s
convenient for management to let them

• Even though testers are essentially powerless,
testers are still held responsible for all quality
lapses

Copyright © 2010, DevelopSense http://www.developsense.com

5

The worst thing about
the dark future is…

A Computer Program

A set of
instructions

for a computer.

See the Association for Software Testing’s
Black Box Software Testing Foundations course, Kaner & Bach

A House

A set of building materials,
arranged in the

“House” design pattern.

A House

Something for people to live in.

Kaner’s Definition of a Computer Program

• A computer program is
• a communication
• among several people
• and computers
• separated over distance and time
• that contains instructions that can be run

on a computer.
The purpose of a computer program is

to provide value to people

Implications of Kaner’s Definition

• A computer program is far more than its code
• A software product is far more than the

instructions for the device
• Quality is far more than the absence of errors

in the code.
• Testing is far more than writing code to assert

that other code returns some “correct” result

Testing is an investigation of code, systems,
people, and the relationships between them.

Quality is value to some person(s).

Copyright © 2010, DevelopSense http://www.developsense.com

6

What Is Testing?

• Excellent testing is not a branch of computer science
• focus only on programs, and you leave out questions of value and other

relationships that include people

• To me, excellent testing is more like anthropology
• highly multidisciplinary
• doesn’t look at a single part of the system

• Anthropology focuses on investigating
• biology
• archaeology
• linguistics
• cultures

Software testing is the investigation of systems
composed of people, computer programs, and

related products and services.

This is our role.
We see things for what they are.

We make informed decisions about quality possible,
because we think critically about software

BUT
We let project owners make the business decisions.

The Bright Future:
Testers Light The Way

So What Are We Testers?

The tester doesn’t have to reach conclusions or make recommendations
about how the product should work. Her task is to expose credible
concerns to the stakeholders.

- Cem Kaner, Approaches to Test Automation, 2009 (my emphases)

The Bright Future:
The Mission is Learning

execution

(a search for
value and risk)

Exploration

discovery

investigation

learningreporting

Testers help to defend the value of the product
by learning on behalf of our clients

We Are Sensory Instruments
For Our Clients

The Bright Future:
Testers Embrace Change

• Change WILL happen
• in market conditions…
• contracts…
• requirements…
• specifications…
• designs…
• documents…
• products…
• systems…

• We help our clients understand the
implications of change

Copyright © 2010, DevelopSense http://www.developsense.com

7

The Bright Future:
Measurement for Inquiry, NOT Control

• Metrics like Defect Detection Percentage
ignore almost every relevant factor
• difficulty of the problems being solved
• quality of the design
• quality of the code
• release timing
• who made the release decision, and why
• timing of customer adoption
• the fact that requirements and bugs are relationships

• …but are routinely used to evaluate the
quality of testing

The Bright Future:
Observation Over Counting

• quantitative criteria
• data
• bug counts
• test cases completed
• pass/fail ratio
• release metrics
• one test per requirement
• what numbers tell us
• blame

– qualitative criteria
– information
– problem and issue stories
– multivariate coverage
– “Is there a problem here?”
– good enough quality
– risk focus
– what numbers leave out
– understanding

Instead of this… we consider this.

The object of measurement is not to provide answers,
but to suggest better questions.

The Bright Future:
Testing Is More Than Checking

• Checking is a process of confirming and
verifying existing beliefs
• Checking can (and I argue, largely should) be done

mechanically
• It is a non-sapient process

I’m very fast…
but I’m slow.

See http://www.developsense.com/2009/08/testing-vs-checking.html

What IS Checking?

• A check has three attributes
• It requires an observation
• The observation is linked to a decision rule
• The observation and the rule can be applied

Oh no! What Does “Sapient” Mean?

• “Sapient” means “requiring human wisdom”
• A non-sapient activity can be performed

by a machine
that can’t think

(but is quick and precise)

by a human who has been
instructed NOT to think

(and who is slow and erratic)

Checking ISN’T New

• Despite what the Agilists might have you believe,
checking is not new
• D. McCracken (1957) refers to “program checkout”
• Jerry Weinberg: checking was important in the early

days because
• computer time was expensive
• programmers were cheap
• the machinery was so unreliable

• Checking has been rediscovered by the Agilists
• centrally important to test-driven development,

refactoring, continuous integration & deployment
• successful checking must be surrounded by skilled

testing work

Copyright © 2010, DevelopSense http://www.developsense.com

8

Checking IS Important

• Checks help to establish baseline
functionality in test-driven development

• Checks serve as change detectors
• Excellent checking helps programmers to

refactor (improve the quality of existing
code without changing functionality) at top
speed

• Checks provide a first-line defense against
regression problems

…But Checking Has Limitations

• Checks tend to be designed early…
• …when we know less than we’ll ever know

about the product and the project
• Checks focus on “pass vs. fail?”
• Skilled testers focus on a different

question:

Risks With “Acceptance Tests”

• They tend to be set at the beginning of an iteration
or development cycle
• when we know less about the product than we’ll ever know.

• Talk about acceptance tests tends to leave out
questions of who is accepting what, and for what
purpose.

• Acceptance tests are examples. They tend to
cover non-implementation risks very poorly

• Acceptance tests are checks, not tests.
• Properly viewed, they should prompt rejection for

failing, rather than acceptance for passing.
• Therefore: they should be called rejection checks.

Checks themselves are
skill-free, but checking is

dominated by testing skill.

Before the Check

• Recognize a risk
• Translate to a test idea
• Express a test idea as a bit
• Turn the question into code
• Determine the trigger
• Encode the trigger

Testing skill
Testing skill
Testing skill
Programming skill
Testing skill
Programming skill

After The Check

• Read the bit
• Aggregate bits
• Design a report
• Encode the report
• Observe the report
• Determine meaning
• Determine

significance
• Respond

Programming skill
Programming skill
Testing, design skill
Programming skill
Testing skill
Testing skill
Testing skill
Testing,
programming, and
management skill

Copyright © 2010, DevelopSense http://www.developsense.com

9

The Bright Future:
Repeatability vs. Adaptability

• Repeatability, for computers, is relatively easy, but
testing is not mere repetition. It’s an open search.

• Skilled testing therefore focuses on adaptability,
value, and threats to value

The Bright Future:
Testing IS Exploring

• Our community sees testing as exploration,
discovery, investigation, and learning
• Testing can be greatly assisted by machines, but can’t

be done by machines alone
• Testing is a sapient process I can’t test,

but I can help
you act on
test ideas.

See http://www.developsense.com/2009/08/testing-vs-checking.html

What IS Exploratory Testing?

• I follow (and to some degree contributed to) Kaner’s definition,
which was refined over several peer conferences through 2007:

Exploratory software testing is…

• a style of software testing
• that emphasizes the personal freedom and responsibility
• of the individual tester
• to continually optimize the value of his or her work
• by treating test design, test execution, test result

interpretation, and test-related learning
• as mutually supportive activities
• that run in parallel
• throughout the project.

See Kaner, “Exploratory Testing After 23 Years”,
www.kaner.com/pdfs/ETat23.pdf

Whoa. Maybe it
would be a good

idea to keep it brief
most of the time…

Why Explore?

• You cannot use a script to
• investigate a problem that you’ve found
• decide that there’s a problem with a script
• escape the script problem you’ve identified
• recognize terrible risks in the product
• determine the best way to phrase a report
• unravel a puzzling situation

So why don’t we hear more about E.T.?

• Maybe managers fear that E.T. depends on skill
• but who benefits from ANY unskilled testing?

• Maybe managers fear that E.T. is unstructured
• but it is structured

• Maybe managers fear that E.T. is unaccountable
• but it can be entirely accountable

• Maybe managers fear that E.T. is unmanageable
• but you can manage anything if you put your mind to it

FEAR
Yes, Exploratory Testing Requires Skill

• Doesn’t ANY testing (worth doing) require skill?

Well, we wanted
to go with

a skilled pilot…

But they’re just
so darned

expensive…

The value of test information
is directly related

to the skill of the tester. Hire (or train) testers with
the skills to provide you

with the information you seek.

Copyright © 2010, DevelopSense http://www.developsense.com

10

Exploratory Testing IS Structured

• We’ve studied the structures of ET, we’ve written about it,
and we know how to teach it

• The structure of ET comes from many sources
• Test design heuristics
• Chartering
• Time boxing
• Perceived product risks
• The nature of specific tests
• The structure of the product being tested
• The process of learning the product
• Development activities
• Constraints and resources afforded by the project
• The skills, talents, and interests of the tester
• The overall mission of testing

In other words,
it’s not “random”,

but systematic.

Not procedurally
structured, but

cognitively structured.

http://www.developsense.com/resources.html#exploratory

Exploratory Testing IS Accountable
Concise Documentation Minimizes Waste

Risk ModelCoverage Model Test Strategy
Reference

Risk CatalogTesting Heuristics
General

Project-
Specific Status

Dashboard
Schedule BugsIssues

Exploratory Testing IS Accountable
Session-Based Test Management

• Charter
• A clear, concise mission for a test session

• Time Box
• 90-minutes (+/- 45)

• Reviewable Results
• a session sheet—a test report whose raw

data can be scanned, parsed and
compiled by a tool

• Debriefing
• a conversation between tester and

manager or test lead

vs.

57
For more info, see http://www.satisfice.com/sbtm

Exploratory Testing IS Manageable

Guide testers with personal supervision and
concise documentation of test ideas. Meanwhile,
train them so that they can guide themselves and
be accountable for increasingly challenging work.

Test
Ideas

Achieve excellent test design by
exploring different test designs

while actually testing and
interacting with the system

Product

Product
or spec

Tests

Exploratory Testing IS Manageable

Guide testers with personal supervision and
concise documentation of test ideas. Meanwhile,
train them so that they can guide themselves and
be accountable for increasingly challenging work.

Test
Ideas

Note the role of checks, especially
when done by programmers as they

write and maintain the code, in creating
a more testable product.

Product

Product
or spec

Checks

Tests

My Alternative to Certification

• I read books and articles that are not about testing
• science and physics
• mathematics and statistics
• cognitive psychology and critical thinking
• computer programming and software design
• food and cooking
• general systems
• medicine
• economics
• social sciences
• history
• comedy

• I relate these disciplines to testing, and describe
the value of the relationships

Copyright © 2010, DevelopSense http://www.developsense.com

11

My Alternative to Certification

• I practice and teach testing
• whereby I gain experience by succeeding and failing

• I practice critical thinking
• whereby I try to avoid fooling myself and others

• I practice systems thinking
• whereby I learn to see the big and small pictures

• I practice programming
• whereby I obtain humility

• I practice describing my practices
• orally
• in writing (magazine articles, blogs, etc.)
• in presentations (like this one)

• I participate in a community that works this way.

The Movement to Standardize Testing

• Standardization of testing is like the
standardization of tester certification

• We all know how well that has worked out
• for the testing community at large
• for individual testers
• for organizations who have fallen for the marketing
• AND for a small group of certification salespeople

• Ask yourself:
• 130,000 testers times at least $100 per exam…

where does that (at least) $13,000,000 go?
• Who is most aggressively promoting ISO 29119?

We’re not here to
enforce The Law.

We are neither
judge nor jury.

We’re here to add value,
not collect taxes.

We’re here
to be a service
to the project,
not an obstacle.

Copyright © 2010, DevelopSense http://www.developsense.com

12

of Software Testing

These are not the only two futures.
They’re offered for your consideration.

The choices are up to you.

The future of testing
is up to us.

Who I Am

Michael Bolton
(not the singer, not the guy in Office Space)

DevelopSense, Toronto,
Canada

mb@developsense.com
+1 (416) 992-8378

http://www.developsense.com

Web Resources

• Michael Bolton
http://www.developsense.com

• James Bach http://www.satisfice.com
• Cem Kaner http://www.kaner.com
• The Florida Institute of Technology

• http://www.testingeducation.org
• http://www.testingeducation.org/BBST/index.html

• StickyMinds http://www.StickyMinds.com
• Risks Digest http://catless.ncl.ac.uk/risks

Bibliography
How To Think About Testing

• Perfect Software and Other Illusions About Testing
• Gerald M. Weinberg

• Lessons Learned in Software Testing
• Cem Kaner, James Bach, and Bret Pettichord

• “Software Testing as a Social Science”
• Cem Kaner; http://www.kaner.com/pdfs/KanerSocialScienceSTEP.pdf

• Testing Computer Software
• Cem Kaner, Jack Falk, and Hung Quoc Nguyen

• An Introduction to General Systems Thinking
• Gerald M. Weinberg

• Exploring Requirements: Quality Before Design
• Gerald M. Weinberg

Bibliography
Recommended Test Technique Books

• A Practitioner’s Guide to Test Design
• Lee Copeland

• How to Break Software
• James Whittaker

• How to Break Software Security
• James Whittaker and Herbert Thompson

• Lessons Learned in Software Testing
• Cem Kaner, James Bach, and Bret Pettichord

• Testing Applications on the Web
• Hung Quoc Nguyuen

• Hacking Web Applications Exposed
• Joel Scambray and Mike Shema

Bibliography
Jerry Weinberg

• Quality Software Management Vol. 1: Systems
Thinking

• Quality Software Management Vol. 2: First
Order Measurement

• Secrets of Consulting: How to Give and Get
Advice Successfully

• Anything by Jerry Weinberg

Copyright © 2010, DevelopSense http://www.developsense.com

13

Bibliography
Richard Feynman

• The Pleasure of Finding Things Out
• see the Appendix to the Challenger Report.

• Surely You’re Joking, Dr. Feynman!
Adventures of a Curious Character

• What Do You Care About What Other
People Think?

Bibliography
Other Areas

• The Social Life of Information
• Paul Duguid and John Seely Brown

• Please Understand Me
• David Kiersey
• The Myers-Briggs Type Inventory, which provides insight into

your own preferences and why other people seem to think so
strangely

• The Visual Display of Quantitative Information
• Edward Tufte
• How to present information in persuasive, compelling, and

beautiful ways
• A Pattern Language

• Christopher Alexander et. al
• A book about architecture
• even more interesting as a book about thinking and creating

similar but unique things—like computer programs and tests for
them

