
18	 BETTER SOFTWARE	 APRIL 2009	 www.StickyMinds.com

Test Connection

Learning from Experience
by Michael Bolton

The Social Life of Information [1] de-
scribes researchers at Xerox who were
puzzled by the reluctance of copier repair
people to use the repair manuals and the
online information system. Anthropolo-
gists, rather than traditional process ex-
perts, examined the ways in which the
repair people did work, learned skills, and
exchanged knowledge. The analysis noted:

What looked clear and simple
from above was much more
opaque and confusing on the
ground. Tasks were no longer so
straightforward and machines,
despite their elegant circuit dia-
grams and diagnostic procedures,
exhibited quite incoherent behav-
iors … Consequently, the informa-
tion and training provided to the
reps was inadequate for all but
the most routine of the tasks they
faced. Although the documenta-
tion claimed to provide a map, the
reps continually confronted the
question of how to travel when
the marked trails disappeared.

In a process model, machines work
and break down predictably. You get
an error code, and then you replace the
part indicated by the error code. Yet
machines are idiosyncratic and behave
differently based on their age, the con-
ditions of their parts, the interactions
between them, which parts have been
replaced and which ones haven’t, the
environment in which they’re used (hot,
dry, damp, dusty, heavy or light traffic),
and so forth.

So how did the repairmen cope?
First, they learned about the machines
as farmers learn about their cattle.
They recognized (as the process model
didn’t) that each copier has peculiari-
ties, strengths, and weaknesses. The re-
pairmen’s experience and skill allowed
them to recognize general problems
versus machine-specific ones. And what
did they do when they were stuck? The

anthropologist knew (as the managers
didn’t): The repairmen went to lunch.
And breakfast. They met before break-
fast (the managers assumed that the re-
pairmen’s days started at 9:00 a.m., but
the anthropologist knew differently).
They met for dinner, met for coffee, and
played cards. And they talked about
work incessantly. They developed col-
lective knowledge, discussed it, refined
it; they were resources for one another.
What they were trading was not mere
information, but knowledge.

A while ago, I went to work for a fi-
nancial institution. On my first day, my
new manager showed me around and
introduced me to the other testers and
to the developers. “Here’s your desk,
and here (THUMP!) is the spec for the
product you’ll be testing.”

This 120-page document had been
prepared by professional writers—not
bankers nor testers nor programmers.
The writers wrote clearly, but they didn’t
really comprehend the process that they
were describing. Bits of the document
helped with rapid learning, but not
much. As a typical specification, it was

meant as a reference, rather than a tu-
torial. It was authoritative, rather than
friendly.

Reading the specification carefully
and critically was hard. Its subject was
a payment-processing system that in-
cluded a payment-notification option.
The specification called the person who
was sending the money the “payer”
and the person receiving the notice the
“payee.” The payee could designate
some other person to accept the payment
and could send that person appropriate
information to pick it up. At this stage in
the description, the name for the payer
magically turned into “sender” and the
person who got the money was called
the “receiver.” So, the payee received the
notification but wasn’t necessarily the
one who got paid. Meanwhile, the re-
ceiver got paid but didn’t necessarily re-
ceive a notice from our system, while the
payer and the sender were presumably
the same person. Very confusing. The
glossary contained a bunch of highly
technical banking terms but nothing
clear about this sender/receiver/payer/
payee business. I needed other strategies

IS
TO
CK
PH
O
TO

	 www.StickyMinds.com	 APRIL 2009	 BETTER SOFTWARE 	 19

Cultures, products, and problem
solving can be learned. Training and
mentoring can help. But complex prod-
ucts, human organizations, and human
skills can’t be captured, written down,
and then read into someone’s head like
a computer program. Real knowledge
is socially constructed and experiential.
Don’t mistake the requirements docu-
ment for the requirements; don’t mis-
take the process manual for the process.
{end}

References
[1] Brown, John Seely, and Paul Duguid. The
Social Life of Information. Harvard Business
School Press, 2000.
[2] Beizer, Boris. Black-Box Testing: Techniques
for Functional Testing of Software and Systems.
Wiley, 1995.

to help me learn quickly.
I asked my manager to describe the

roles and the flow of the transactions
through the system and to sketch it on
a whiteboard. I frequently had him
pause to explain things. Later that same
day, I had the director of development
show me the same process. His account
seemed, in places, to contradict my man-
ager’s account. I went back to my desk,
drew up a concept map and a sketch of
the workflow, and asked my manager
to critique it. He pointed out several
mistakes in my understanding. I asked
about connections to external systems
and about potential broken pathways on
my map. I double-checked to make sure
that I could expand and understand the
abbreviations and acronyms.

The conversations and whiteboard
diagrams helped me learn about the
overall architecture of the system. Now
I wanted more fine-grain detail. The
shop used FitNesse, which allows people
to enter tables of examples that contain
function names, input data, and expected
output. Small chunks of code, called fix-
tures, link the data in the tables with ac-
tual functions in the product, and on the
push of a button, FitNesse executes the
functions, fills in the actual results, and
color codes them for fast interpretation.
FitNesse is both a design tool and testing
tool, allowing business people or testers
to create the tables of examples and pro-
grammers to write and test the code to
handle the examples properly. FitNesse
is also a wonderful requirements tool.
Examples can be interspersed with nar-
rative descriptions, diagrams, pictures,
sketches, comments—anything that helps
understanding. That makes FitNesse a
potential learning tool, too.

In our FitNesse wiki, there were …
tables. There also were some titles and
the odd paragraph of description here
and there, but mostly there were tables.
The developers were busy writing code
and making the tables work. The testers
were fleshing out the tables, adding test
ideas, and attempting to learn the intri-
cacies of XPATH to try to parse HTML
documents. Describing the product
wasn’t on people’s priority lists. I could
see a fairly obvious error in one of the
test ideas in FitNesse and wanted to cor-
rect it. Upon adding a particularly harsh

test with a very long string, I found that
FitNesse truncated my input. Suddenly
I found myself buried in the FitNesse
documentation, with new terms to learn,
a structure, a syntax, and exceptions
and gotchas. As I worked those out, I
got help from the developers, the other
testers, and the manager. We learned
mostly by experimentation and by con-
versation. I added detail and description
where it felt useful.

I needed a tool to generate fictitious
credit card numbers and another to con-
vert data from ASCII into EBCDIC (some
big banks still use antique encoding sys-
tems). Off I went to learn some more
Perl. The Perl documentation’s descrip-
tions were often incomprehensible, but
the examples were clear and adaptable.
I made plenty of coding errors at first,
but I learned and worked more quickly
as my hands got dirtier.

When we needed to add new fea-
tures, we held meetings in which busi-
ness analysts, developers, and testers
explored, drew, discussed, questioned,
conjectured, proposed, and sometimes
argued. Drawings helped us understand
the flow, conversation helped us work
out problems, and arguing helped us
refine ideas. The group’s culture was to
argue, sometimes passionately, but to
avoid making the argument personal.
We realized that we had much to learn
from each other. It was reassuring to see
that the programmers themselves often
got confused about that sender/receiver/
payer/payee stuff.

In his book Black Box Software
Testing [2], Boris Beizer asserts, “Docu-
ments (if they are read) are a more ef-
ficient way to transmit process details to
individuals unfamiliar with the process
and the culture.” I used to believe that,
but now I believe that experience with
process and culture—perhaps supple-
mented by documents—is the most ef-
ficient way to transmit process details.
For this financial group, preparing com-
prehensive documentation represented
opportunity cost—time that could be
used for more valuable activities. The
group reckoned that new testers came
on board only rarely, that the ability to
learn rapidly was simply a job require-
ment, and that the culture would sup-
port just-in-time training. It did.

Test Connection

When deciding what you’re
going to document for other

people, how do you decide what’s
going to be helpful and what they’ll

learn for themselves?

Follow the link on the StickyMinds.com
homepage to join the conversation.

Want to receive
complimentary copies of some of

the latest books on
Software Development?

Then you may be interested in the
StickyMinds.com

Book Review Program!

If you’re an experienced software
professional who likes to read and
thrives on sharing opinions, join our

unique book review program that caters
exclusively to the software development

community!

Tell us about your background,
experience, and which topics you’d like
to review. If accepted into the program,
you will receive a book selected for you
to review—up to four a year. And the

best part of the program? You keep the
book—No Charge!

For an application or more information,
contact Cheryl M. Burke:
cburke@sqe.com.

