
July/August 2008 $9.95 www.StickyMinds.com

The Print Companion to

HIP-HIP HOORAY!
Praise for ambiguity

DOUBLE YOUR FUN
8 Benefits of

pair programming

20 BETTER SOFTWARE JULY/AUGUST 2008 www.StickyMinds.com

Test Connection

Two Cheers for Ambiguity
by Michael Bolton

I was sitting at the back of the room,
munching on a donut, sipping a coffee,
and listening to the presenter talking
about the importance of unambiguous
requirements. “What does he mean by
‘unambiguous’?” I wondered.

He also seemed to be opposed to
jargon—yet, jargon, to those who use
it, is extremely precise and unambig-
uous. “Jargon” and “ambiguity” are
like “quality” or “purpose”—subjective
and context-dependent, not properties
of something but rather a relationship
between some person and the thing. Am-
biguity may be a problem or it may not,
depending on its meaning and signifi-
cance to some person.

I was reminded of all this recently
when a colleague observed that he
avoided using words like “skill,” “di-
versity,” “problems,” and “mission,”
because he found them inherently am-
biguous. I replied that I use these words
constantly for exactly the same reason.
I find them to be not only necessary but
also useful as gauges for assessing con-
sensus on a project and how we get to
that consensus.

Some people are comfortable with
ambiguity; others are not. We can spot a
member of one group or the other by the
answer we get when we ask, “Can we talk
about what you mean by ‘skill’ (or ‘diver-
sity’ or ‘test’ or ‘bug’)?” When someone
responds, “Well, for example …” or “In
this context …” or “There are many pos-
sible meanings, but around here we mean
…” then we know we’re in good com-
pany. We can have an evolving, ongoing
conversation that helps us work together
and understand one another, and if we
discover that we don’t have a consensual
understanding of something, we can work
it out. On the other hand, when someone
responds, “Isn’t that obvious?” or “Why
do you keep going meta?” or “Can’t we
talk about practical stuff?” then we know
that there’s work to be done, because
someone is suffering from that terrible
disease, Single Model Syndrome.

Single Model Syndrome is the silver
bullet for ambiguity problems; some-
thing is unambiguous when there’s no
possibility of a second interpretation
of it. On the other hand, Single Model
Syndrome can lead to frightful misun-
derstanding, especially when two people
suffering from it—and using different
models—show up at the same meeting.

The battle against ambiguity has to
do with the problem of closure. Psycho-
logically, some people are comforted by
closure and require it; others don’t re-
quire it and, in fact, may be leery of it.
Developers and project managers tend
to value closure because it gives them a
finish line, a clear goal that can be met.
Good testers are aware of the risk of clo-
sure, especially when it’s premature. Sus-
pending conclusions helps us to see more
alternatives and to adapt to change, both
in problems and in solutions. Seizing cer-
tainty at the requirements stage cuts us
off from alternative approaches and new
information. One common manifesta-
tion of this problem is an excessively de-
tailed test plan—one that doesn’t match
the product that is eventually delivered.

For testers in particular, recognizing
ambiguity is useful. Recognizing am-
biguity is naturally important because
ambiguity is a way in which misunder-
standing may provide homes for bugs
in the product. Yet ambiguity, which

implies more than one possibility, might
also be a blessing in disguise. An am-
biguous sentence might trigger a dis-
cussion about what we perceive, what
we agree upon, and what we don’t yet
understand. An ambiguous word might
have several open-ended meanings that
help reduce tunnel vision. An ambiguous
problem statement might remind us that
there are often several alternative ap-
proaches to solving a problem. The pre-
cise expression of a requirement might
make testers’ lives easier, but perhaps
the meaning and the significance of the
requirement are more important, even
though they may be imprecise.

James Bach tells a wonderful story
that illustrates the distinction. On a
project several years ago, a junior tester
asked James to help interpret a line in
the requirements document that said,
“When the user presses the touchscreen,
the system shall respond within 300 mil-
liseconds.” Holding a stopwatch in one
hand and using the system with the other
seemed impractical, and automation
seemed to have a high development cost,
so James decided to train the testers to
recognize 300 milliseconds. He bought
an inexpensive stopwatch for each of
the testers. They went to lunch and prac-
ticed turning their stopwatches on and
off until they could estimate 250 mil-
liseconds, plus or minus fifty, with rea-

d
Re

a
M

ST
IM

e

 www.StickyMinds.com JULY/AUGUST 2008 BETTER SOFTWARE 21

sonably good precision. Then someone
brought up the question, “What if we
were off by ten milliseconds, and the
system took 310 milliseconds to re-
spond? That would be a failure, but
would that be a problem?”

James realized that he had considered
the precise wording of the requirement—
a shallow sort of meaning—but neither
its deeper meaning nor its significance.
He went to the project manager for clar-
ification. It turned out that the previous
version of the program had taken up-
ward of seven seconds to acknowledge
that it had received input, and customers
had found this annoyingly slow. The de-
signers had put the precise timing—300
milliseconds—into the specification be-
cause they had thought that you couldn’t
use words like “annoyingly slow” with
testers. James suggested instead that
the developers show the testers the old
system so the testers could understand
the problem from a visceral perspective.
In this case, ambiguity was disguised
as precision—and this was no place for
stopwatches.

So how should we deal with ambi-
guity in requirements and elsewhere in
the project? How do we seek it, and how
do we resolve it? Here are some heuris-
tics.

The first thing is to recognize that the
requirements are not the requirements
document; at best, the document is a
stand-in for the ideas of one or more real
people. Recognize that all statements,
whether written or spoken, are poten-
tially ambiguous, but the ambiguity
might not represent a problem for the
project, so look for ambiguity that mat-
ters. A testable requirement is not neces-
sarily one that is painstakingly precise,
mathematically falsifiable, or unfailingly
unambiguous. A testable requirement
is one that helps us ask and answer the
question “Is there a problem here?”

Conversation is a fast and powerful
approach to discovering and resolving
ambiguity. Ask plenty of questions and
watch for disagreements on the answers
from various people; then seek consensus
on meaning and significance. There can
be several levels to the conversation—
one in which we’re talking about some-
thing, another in which we ensure that
we agree on what we’re talking about,

and yet another in which we work out
a protocol for resolving our differences.
This may seem like extra work but, in
fact, people are doing it all the time. The
trick is to do it consciously.

Make sure that conversations are
supplemented by a wide variety of
media—whiteboards, tables, scenarios,
mind maps, wikis, knowledge-crunching
sessions, diagrams—in addition to the
more traditional forms of documenta-
tion. Be skeptical that any one document
will identify all the things you need to
know about your project.

When you spot ambiguity problems,
make the problem clear by pointing
out alternative interpretations: “There
could be a bunch of testing missions in
play here—finding important problems
quickly, investigating the problems we’ve
found, assessing backward compatibility,
identifying new risks. What can we agree
on as the primary goal?”

Don’t feel obliged to document
minute details of every discussion. Doc-
umentation may have high cost and low
value when consensus is the goal. Some

things on a development project are so
important that we don’t write them
down; instead, they become part of the
project culture. (Everyone remember to
breathe!)

Above all, remember Jerry Weinberg’s
definition of a tester—a definition that
highlights the significance of ambiguity
in our work: “A tester is someone who
knows that things can be different.”
{end}

Test Connection

For more on the following topic go to
www.StickyMinds.com/bettersoftware.
n	 Further Reading

Sticky
 Notes

How do you know what you
know? How do you know it?
And how do you know that

others understand things the
same way?

Follow the link on the StickyMinds.com
homepage to join the conversation.

