
THE DOCTOR IS IN
Diagnosing

Software Bugs

ONCE UPONATIME
ATale of User Stories

andTDD

November 2007 $9.95 www.StickyMinds.com

The Print Companion to

On several occasions in Groopman’s
book, a doctor is presented with a difficult
diagnostic problem. In one case, a woman
in her early twenties, complaining of
intense pain to the point of vomiting after
meals, presents herself to doctors. They
diagnose her with anorexia and bulimia
and later suggest irritable bowel syn-
drome. None of the treatments offered by
the doctors provides long-term relief. Af-
ter fifteen years of steadily deteriorating
health and weight loss, she is referred to a
doctor with a reputation for solving
tough problems.

He asks her to tell her story, in her
own words, from beginning to end. He
listens calmly and sympathetically with
an open mind, observes keenly, waits for
the patient to finish her story, and then
asks her a lot of questions. After per-
forming tests and collecting more data,
he recognizes something the other doc-
tors had missed—that the patient might
have a physical ailment in addition to a
psychological one—and diagnoses celiac
disease, an autoimmune disorder. Subse-
quent tests and a rapidly recovering
patient confirm that the diagnosis was
correct. Asked how he did it, the doctor
replied that he continually asks himself
two questions: “What else could this
be?” and “Is this the worst problem this
patient could have?”

Several years ago, I worked on a prod-

uct that was closely tied to an operating
system. One of our test systems had been
cobbled together from spare parts
around the test lab, and this particular
machine wouldn’t boot properly when
our product was present. One of our best
developers (let’s call him Ron) thought
about the problem on and off for three
weeks. He became convinced that it was
just a flaky machine—there was some
incompatibility between its components
that our software exposed, which didn’t
represent an underlying problem that our
code could address.

Our testers were convinced there was
more to the story. Another developer
(and expert tester), Pat, was willing to
believe the testers and thought through
what happened at boot time. He mod-
eled the system into a set of components
and the boot process into a series of
tasks, noting the interactions between
our software and the other elements of
the system. He theorized that the hard
drive controller might be involved in the
problem, set up the machine under the
debugger, and ran some tests. In a few
minutes, he found that when our soft-
ware was present, the drive controller
didn’t initialize properly under a certain
set of easily reproducible conditions.
When the testers tried our product on a
computer that had been in use on anoth-
er project—a machine that had the same

People think in models and metaphors;
we seem to be hard-wired for them.
Metaphors help us make sense of the
world and deal with new things.
Throughout the years, people have
applied various metaphors to software
development, including the notion of
software development as an engineering
discipline. Traditionally, engineering
involved tangible, physical things, but
software has enough in common with
machines and development has enough
in common with construction that the
metaphor has served us well. When
thinking of how to improve our products
and our processes, we ask “What would
engineers do?”

Metaphors are heuristics—fallible
methods for solving problems and for
learning. The engineering metaphor has
become so pervasive that we’re beginning
to take it literally rather than metaphori-
cally. We still have things to learn from
engineering, but there are other fields
from which we can take useful approach-
es, too.

This idea struck me as I began reading
Dr. Jerome Groopman’s How Doctors
Think and recognized that many of the
issues doctors face in diagnosing diseases
are similar to those we face as software
testers. Doctors work under conditions of
extreme time pressure; they must adapt
their choices to their clients and contexts,
which may change at any time. They must
identify and investigate symptoms of trou-
ble while recognizing that they cannot
know everything there is to know about
the system. Moreover, doctors are beginning
to recognize that complex systems—namely
human patients—are resistant to discrete,
linear, decision-making processes. Instead,
doctors often make decisions based on
rapid observation, instant analysis, and
incomplete information—that is, by heuris-
tic processes. In addition, medicine is a
pursuit in which technical aspects are of-
ten overemphasized at the expense of
human values.

IS
TO

CK
PH

O
TO

Test Connection

HowTestersThink
by Michael Bolton

16 BETTER SOFTWARE NOVEMBER 2007 www.StickyMinds.com

www.StickyMinds.com NOVEMBER 2007 BETTER SOFTWARE 17

controller but a brand-name system—it
crashed on boot. Pat threw in a short
routine to special-case this drive con-
troller, he squashed the bug, and we
shipped on time. How had Pat solved the
problem so quickly when Ron couldn’t?

Ron had suffered from several signifi-
cant, related cognitive errors, all of
which have parallels in How Doctors
Think. The bias that allowed Ron to
ignore the problem was fundamental
attribution error—explaining something
entirely by a preconception or a stereo-
type (“She’s anorexic”; “Machines that
have been assembled from spare parts
are intrinsically unreliable”). He attrib-
uted the problem to a single path of
causation (“bulimia”; “a flaky con-
troller”) rather than interaction between
multiple parts of the system. Anchoring
bias—dropping anchor on an idea and
not moving from it—allowed him to get
stuck. (The doctors were stuck for fifteen
years; the developer for three weeks.)

Like the successful doctor, Pat used
applied epistemology combined with
empiricism. “If I believe something,” he
told me later, “I ask myself why I believe
it, and then I test for it.” He pulled up
the intellectual and emotional anchor
and tried to abandon preconceptions
that would get in the way of solving the
problem. He kept his mind open to pos-
sibilities; there might be a bug in our
code, in the disk controller, or in the
interaction between them. He noted that
the controller worked with products sim-
ilar to ours, which allowed him to
narrow down the conflict to one of our
product’s unique features.

As testers, we never know for sure the
deep truth about any observation, so
excellent testing includes open-minded-
ness and critical thinking at every stage
of the testing process. We think we know
something, but it’s only what we know
so far. When tests aren’t revealing impor-
tant new information, we might decide
to stop testing, but we also might consid-
er that we’re using insufficient tests or
making insufficient observations. Con-
tinued questioning is central to good
testing. Contrary to much of our profes-
sion’s folklore, a good testing question
doesn’t necessarily have a definitive,
expected result. Tests that are designed to

confirm a prevailing theory tend not to
reveal new information. Collaboration
and consultation tend to be more power-
ful than working alone—especially when
we’re stuck. If you’re in an organization
that assigns work to a single tester per
feature, consider paired testing sessions
with another tester. Note the flow of
ideas, your progress—and the bugs you
find.

People learn from stories. In software
testing, we compose, edit, justify, and
narrate two kinds of stories. We tell the
product story, which is everything that
matters about how the product can
work, how it has failed in tests, and how
it might fail in the field. We also tell the
testing story, which is about how we
have configured, operated, and observed
the product; the things we haven’t tested
yet; the things we won’t be able to test at
all; and why we believe that what we’ve
done is good enough.

Medicine is a metaphor, and
metaphors get their power from the com-
bination of comparison and contrast.
There are a lot of ways in which testers
aren’t like doctors—and programs aren’t
like patients. For one thing, patients can
tell their stories; software has to be run so
we can observe it. At a certain level, soft-
ware can be considerably more
deterministic and easier to diagnose than
human patients. As testers, we’re rarely
under the same kind of time pressure and
emotional burden as doctors. Still, learn-
ing how doctors think may teach us some
important lessons about how testers
could think. {end}

Michael Bolton lives in Toronto and teach-
es heuristics and exploratory testing in
Canada, the United States, and other coun-
tries. He is co-author, with James Bach, of
Rapid Software Testing and a regular con-
tributor to Better Software magazine.
Contact Michael at mb@developsense.com.

Test Connection

From what other professions
do you take testing lessons?

�

Follow the link on the StickyMinds.com
homepage to join the conversation.

