
June 2007 $9.95 www.StickyMinds.com

The Print Companion to

TIME MANAGEMENT
What to say when the

boss asks, “how long?”

DEFECT DILEMMA
Get some perspectives

on the bug-tracking
debate

When Industry
Standards
Don’t Apply

As a testing consultant, I’m often asked,
“My manager wants to know how long it
will take to test this product. How do I
give him an answer and still know that I
have enough time to test?” Providing an
answer starts with understanding what
the manager’s question really means.

The manager might be asking “When
will the testers be able to declare the
product ready to ship?” This is a danger-
ous question, because it presumes that
testers set the quality standards for the
product. As testers, our role is to provide
timely, relevant, important information
to the project community—especially
management—about how the product
can work and how it might fail, so that
they can make informed decisions and
take appropriate actions. The state of the
product is important, but it’s only one
part of the release decision, which is a
business decision. Project managers
should have information about market
conditions, business needs, contractual
obligations, commitments to partners,
and the like. They should have authority
to make decisions about project re-
sources, schedule, product scope, budget,
training, support, and deployment readi-
ness. As testers, we contribute
information to those decisions, but we
don’t make them.

The manager might be asking for help
in making the decision: “When should I
ship the product?” Framed this way, the
question recognizes the manager’s right
and responsibility to decide. For a tester,
the short answer is “whenever you like.”
The longer version goes like this: “I can’t
make your decision, but I can give you
information that helps you. I’ll focus on
finding important problems quickly. If
you want to know something specific
about the product, I’ll run tests to find
the answer. Any time you need me to re-
port my status, I will. If you decide to
change the ship date, I’ll abide by that.
You can release whenever you decide that
you don’t have any more important ques-

tions about the product, and that you’re
happy with the answers you’ve received.”

The question might be “How much
time would you like to have to test the
product?” This question is similar to
“How much money would you like to be
paid?” The answer, for most people,
probably would be “as much as you’re
willing to give me.” Testing is implicitly
an open-ended search, so testing could
theoretically go on forever. “Forever” is
not usually a palatable answer, nor is it
reasonable. At some point, the added val-
ue provided by more testing isn’t justified
by its cost. Moreover, decisions about
quality are inherently subjective, political
decisions based on whomever’s values
matter. Testers don’t run the project or set
the schedule; we respond to development
work and to demand for a deeper under-
standing of the system. What happens
will depend largely on what already has
happened.

The question might be “What can we
do to speed up testing?” It’s wonderful
when a project sponsor asks this question
when the answer is going to prompt posi-
tive action. From the tester’s perspective,
testability is the key. Testability includes
controllability—typically in the form of a
scriptable application program interface
to control the program via automation—
and visibility—log files, on-screen
monitors, or anything that lets us see

what’s going on. Aspects of testability
also include access to information about
the product and the business domain, ac-
cess to the developers and other members
of the project team, early and frequent
availability of code, modularity of the
code, and ease of setup and configura-
tion. And there’s one other crucial
element: the condition of the program
when we receive it.

Assume that a test for some feature
takes two minutes. (This is artificial and
silly—tests aren’t equivalent in size,
scope, and value, but bear with me.) And
let’s say that investigating and reporting a
bug takes ten minutes (again, silly, and
probably a severe underestimate). And
let’s assume we have sixty minutes for
testing. We’re given Module A to test. It
has no bugs at all; in an hour of testing,
we’ll be able to perform thirty feature
tests. Module B has a bug; we’ll spend
ten minutes investigating and reporting
that problem. In the remaining fifty min-
utes, we’ll be able to run twenty-five
more feature tests, for a total of twenty-
six tests in the hour. We find five
problems in Module C. Investigation and
reporting takes fifty minutes; ten minutes
remain for five feature tests of two min-
utes each.

From one perspective, things look
good; we’ve found five problems in
Module C. In Module A we’ve covered

AnArsenal ofAnswers
by Michael Bolton

14 BETTER SOFTWARE JUNE 2007 www.StickyMinds.com

Test Connection

IS
TO

C
K
P
H

O
TO

Test Connection

www.StickyMinds.com JUNE 2007 BETTER SOFTWARE 15

What alternate meanings to the
“how long” question have you

encountered?
How did you respond?

�

Follow the link on the StickyMinds.com
homepage to join the conversation.

thirty test ideas, and in Module B twenty-
six test ideas, but the problems in
Module C leave us time to exercise only
ten test ideas—one-third of the feature
tests that we anticipated. Either we’ll
have to allocate more time to this mod-
ule, or leave some ideas untested. When
we find numerous bugs in a product, test-
ing slows down, coverage worsens, or
both.

The question might be “When will we
know that we’ve found the most impor-
tant problems?” Since bugs are hidden,
this question can’t be answered; if we
knew where they were, testing would be
fast and easy. Some people use metrics to
try to estimate the number of problems in
a product. This approach is subject to a
critical-thinking error called the proba-
bilistic fallacy: The number of bugs in
this product isn’t predictable. Floridians
aren’t safe from additional hurricanes
just because they’ve experienced the pre-
dicted number of storms for the season.
Police don’t conclude investigations sim-
ply because they have rounded up the
average number of suspects.

Although we can’t know that we’ve
found the most important problems, we
can use a pragmatic approach to find
them: Provide the best test coverage we
can in the time we have available. Test
coverage is the extent to which we have
modeled and tested the product. The
more models we use, the less likely we are
to miss a class of problems. Choose a di-
versified, risk-based, product-focused
strategy to evaluate the product. Rapid
testers use the Heuristic Test Strategy
Model (see the StickyNotes for more infor-
mation) suggests product elements
(structure, function, platform, data,
operations, and time) and quality criteria
(capability, reliability, usability, testabili-
ty, and several other -ilities). Diversify
your test techniques to identify risk areas
that you might not have considered.

The question might be “How long
should the test phase last?” Reframe that:
Is there ever a phase solely devoted to
testing? When a project enters a “test
phase,” the testers have been testing since
the project started and continue testing
until release. The developers keep devel-
oping during the “test phase”; they’re
adding code or fixing problems until the
product ships. All cycles of development

are followed by cycles of testing; the
“test” phase is really the fix phase.

After reframing, the project manager
might ask, “OK, how long should a test
cycle last?” That’s a project-specific ques-
tion, too, but we can apply some
heuristics. The cycle should be long
enough to respond to the development
work that has just finished and short
enough that it doesn’t lag behind the next
cycle of development. Time spent on rein-
stallation and configuration takes time
away from test coverage, so cycles should
be long enough to configure the product
and get some useful work done. Every
change to the product could change what
we know about its quality; so, as the re-
lease date nears, make fewer and smaller
changes per build and shorten develop-
ment and test cycles.

I used to worry about not having
enough time to test. Those worries disap-
peared when I recognized that as testers,
we serve the project, rather than drive it.
We keep providing service until the client
is satisfied. The question isn’t whether the
tester has enough time—the question is
whether the client has enough informa-
tion, and the client decides that. When we
understand management’s authority, we
always have enough time to test. {end}

Michael Bolton lives in Toronto and
teaches heuristics and ex-
ploratory testing in Canada,
the United States, and other
countries. He is a regular con-
tributor to Better Software
magazine. Contact Michael at
mb@developsense.com.

Sticky
Notes

For more on the following topic go to
www.StickyMinds.com/bettersoftware.

� The Heuristic Test Strategy Model

