
When in Doubt, Reframe
by Michael Bolton

14 BETTER SOFTWARE MAY 2007 www.StickyMinds.com

Test Connection

G
ET

TY
IM

A
G

ES

Several years ago, I was hired to test a
product that had been released a year
earlier. The product itself wasn’t expected
to change, but the development organiza-
tion was preparing a major upgrade to
the platform on which the product ran. I
was assigned to test a specific module
that did data conversion. My assignment
was to update some test data, revamp the
test documentation, and retest the system
for important problems based on test
ideas from the previous year’s effort.
That mission was specific and focused,
but in the course of getting ready for
some on-charter testing, I did a little ex-
perimenting. I entered the digit 9 into
every space in every field of an important
data input screen and pressed Enter. The
program promptly crashed, leaving only
an ugly Java stack exception on the
screen. I showed it to Alan, the develop-
ment lead for the project. His response
surprised me. First he said, “You’re sup-
posed to be testing the conversion
module!” Then he added, “Besides, no
user would ever do that.”

I paused for a moment. It was certain-
ly true that I was supposed to be testing
the conversion module, but was it really
the case that no user would ever do that?
I had just done it, so what Alan was say-
ing was clearly irrational. Or was it? I
remembered a thread from Jerry Wein-
berg’s SHAPE Forum, in which Jerry had
said, “Software maintainers definitely
have to learn to deal with ‘irrationality,’
and the first step in that learning is to
stop calling it irrationality. Call it ‘ratio-
nal from the point of view of another set
of values.’” Treating Alan’s reaction as ir-
rational wasn’t going to help matters. I
needed to re-evaluate and reframe his re-
sponse.

The first step was to examine my
charter. When Alan said, “You’re sup-
posed to be testing the conversion
module,” was he concerned that I was
spending too much time on weird prob-
lems and not enough time on problems

that were more obvious, more common,
or—more importantly—within my char-
ter? That’s a potentially serious
occupational hazard for testers. It’s easy
to misinterpret our mission as “Find as
many problems as you can as quickly as
possible,” when the mission is really
“Find the most important problems as
quickly as possible.” I had just started on
the project and had yet to establish credi-
bility with Alan. Whatever my response, I
needed to make sure he knew that I un-
derstood the mission.

Could he have been pointing out the
risk of wasting time duplicating the work
of other testers? That would have been a
rational concern if the test had taken a
long time to prepare or execute, or if
there had been a similar report anywhere
in the bug-tracking database. However,
the test had taken only a few seconds to
design and run, and there was no evi-
dence that this bug had ever been
reported. I had heard that the poor prod-
uct quality had surprised the development
team on the first go-around. Using a
heavily scripted process, the contractor
test team had found 500 bugs, most of
which had been fixed before shipping.
But according to the test lead, 1,500 new

problems had come in from the field in
the first three months after release. Now,
merely counting bugs or bug reports re-
quires skepticism—a simple count
ignores a lot of important information,
such as the severity, complexity, and fre-
quency of each problem—but the essence
of the story was that the contractors had
missed a significant number of problems.

How likely was it that a real user
would trigger the problem in produc-
tion? The probability of a normal user
intentionally entering exactly that data in
normal circumstances was practically nil.
So I had to consider and address the pos-
sibility that I was overestimating the
likelihood of the bug.

Had I been submitting a bug report
formally, it would have been my respon-
sibility to investigate the problem and to
provide Alan with as compelling a sce-
nario as I could, but at this point I hadn’t
done that. Instead, I was mentioning the
problem in passing—talking with a live
oracle to help me understand more about
the bug and its significance.

Did the crash present a real risk? A
crash is evidence that there is some un-
handled condition in the program, which
puts it into an unpredicted and therefore



Test Connection

unpredictable state. This program inter-
acted with many other programs, and
without further testing I couldn’t be sure
that they would be ready to handle the
crash gracefully. Moreover, my test had
exposed a problem by a fairly arcane sce-
nario, but perhaps there was a less
extreme and more typical circumstance
that would trigger it. When we are imag-
ining what users might do, we need to
consider extreme behavior, even if it’s un-
common. Perhaps a normal user might
trigger that condition by accident. Per-
haps a malicious user might exploit it to
try to crash the program. Perhaps a curi-
ous person might attempt to “test” the
program while in production.

Perhaps we should reframe the stock
phrase “No user would ever do that” to,
as James Bach says, “No user I can think
of, who I like, would do that on pur-
pose—and if he did, I’d hope that the
system wouldn’t let him.” Perhaps Alan
was thinking, “I sure didn’t design it to
handle that, and the spec didn’t have any-
thing to say about this situation, so I
assume no one else thought of it either.
And if we start thinking that way, there
are a lot of other things that we’ll have to
think about, too.”

“No user would ever do that” might
be missing the words “as far as I know.”
That appeared to be the case in this or-
ganization; developers were rarely in
contact with the users of the program, in-
sulated by several layers of help desk,
business analysts, and middle managers.
“No user would ever do that” might also
be missing the words “after we’ve trained
him not to do that.” Indeed, several bugs
on this project were deferred to be ad-
dressed as “training issues.”

I also had to consider that Alan’s reac-
tion had nothing to do with me
personally, but with the bad news or its
surprising nature. A bug means extra
work for someone, and the initial reac-
tion to a report may have a strong
emotional component. The missing
words could be a note of irritation
(“We’ve got real work to do here!”) or
fear (“There might be a ton of bugs just
like this in this program and even more
that are only a little like this. Don’t pull
on that thread; our whole program could
unravel”).

I took a breath and chose my words
carefully. “I know that I’m supposed to be
testing the conversion module. In the early
stages of a project like this one, I’m learn-
ing about the product. While doing that, I
tend to do some quick sanity checks on
the stability of the program and the work
of the other testers. It doesn’t take much
time. Plus, there’s the possibility that I
might find something important at a very
low cost, and it helps me to be sure that
things are stable enough to be tested. I’m
concerned that if I’m finding a crash at
this early stage with a pretty simple test,
there are other big problems still to be
found. I will focus on the conversion mod-
ule, but if I find more problems like this
one—even if they’re not in the conversion
module—do you want to hear about
them?”

Alan considered this for a moment and
said, “Well . . . I guess.” As time went on,
we found and fixed a lot of bugs.

One key and often underemphasized
testing skill is listening for what our
clients might be saying aside from their
specific words. Another is in recognizing
and developing consensus on what the
mission is. A third is in digging up buried
assumptions. All of these skills benefit
from expansive views of what might be
possible. Whether in a conversation or a
specification, the words provide clues—
but they might not be the whole story.
{end}

Michael Bolton lives in Toronto and
teaches heuristics and exploratory testing
in Canada, the United States, and other
countries as part of James Bach’s Rapid
Software Testing course. Michael is also
program chair for the Toronto Associa-
tion of System and Software
Quality. He is a regular con-
tributor to Better Software
magazine. Contact Michael
at mb@developsense.com.

www.StickyMinds.com MAY 2007 BETTER SOFTWARE 15

Is there a sentence that you’re
used to hearing on development
projects—a sentence for which
you’ve developed a translation?

�

Follow the link on the StickyMinds.com
homepage to join the conversation.


