
March 2007 $9.95 www.StickyMinds.com

The Print Companion to

ACCEPTING EXCEPTIONS

. . . and putting them
to good use

ESCAPING

THE DEATH SPIRAL

Take time now,
save time later

Still gambling
on project scheduling?
Learn how you can

Still gambling
on project scheduling?
Learn how you can

12 BETTER SOFTWARE MARCH 2007 www.StickyMinds.com

Test Connection

The first job in which I was called a
software tester was at Quarterdeck, but
I was a tester there long before I had the
official title.

I worked in the technical support
department. The company produced
two interrelated products, DESQview
and the Quarterdeck Expanded Memory
Manager (QEMM-386). They were
marketed separately, as well as together
under the name DESQview 386.

The age of DOS on the Intel 386
processor family was as unruly as the Wild
West. Applications could write directly to
the display hardware, grab control of the
mouse and the keyboard by using BIOS
calls instead of going through the oper-
ating system, and allocate all of the
memory on the system without so much
as saying, “Excuse me.” There were a
dozen software interfaces for accessing
the physical memory of the machine,
but because of DOS’s heritage on earlier
processors, the most important kind of
memory was in short supply.

QEMM-386 was a memory manager
for the 386 family. Its original purpose
was to supply memory to DESQview and
to all the applications running under it.
DESQview was a multitasking environ-
ment that supported regular, off-the-shelf
DOS applications, of which there were
hundreds. The applications didn’t have
to be written for DESQview or even
be aware of it. The 386 processor intro-
duced a number of hardware features
that QEMM and DESQview together
could exploit and manage, such as the
ability to supply a virtual display that
fooled applications into thinking
that they were writing to the real display.
These features expanded DESQview’s
power enormously. QEMM also gained
a life of its own, supplying memory to
DOS programs even when they weren’t
running under DESQview.

For the longest time, there was no
department called “testing” or “quality
assurance” at Quarterdeck, yet DESQview
386 was startlingly compatible and robust,

problems with a program, we could install
and run that program under DESQview
while we were on the phone, even with
all of our other programs open. Some
tasks were complex, and the order in
which we did them wasn’t regular or
predictable. As a result, we sometimes
encountered problems that we wouldn’t
have seen had we always been doing things
in the same order. A diversity of workflows
tends to expose sequence-related bugs.

Another key advantage, from a testing
perspective, was that it was early enough
in the age of the PC that employees had
come to the company from a wide range
of backgrounds. Most of us had been
computer users of one kind or another,
but we had diversity going for us in other
dimensions. There were database designers
and programmers, film critics, musicians,
retail salespeople, bulletin-board system
operators, artists, network administrators,
and programmers. We found and fixed
many of problems because we were set
up to see them. Diversity of the test team
and its ways of using the product makes
testing more powerful.

All of us at Quarterdeck used
DESQview 386 as it was meant to be
used—in a variety of user models, for a
variety of tasks, and in challenging envi-
ronments where plenty of things were
going on. Our salespeople, marketers,

especially considering all the applica-
tions, hardware, and (non-)standards
that it had to support—plus it sold like
hotcakes, suggesting that customers
clearly valued it. So, how did we test these
products effectively and achieve such a
high level of quality? The answer is that
we had a valuable and powerful stand-in
for more formal testing approaches: We
used the products, every day, all the
time, just like our users did.

DESQview and QEMM were highly
interdependent. Because DESQview
exercised QEMM’s memory management
features extensively and QEMM provided
so many important services to
DESQview, each product served as a
useful oracle—a principle or mechanism
by which we identify problems—for the
other. A problem in QEMM had a good
chance of exposing itself through a
problem with DESQview, and vice versa.
Excellent testing depends on powerful
oracles.

DESQview had a big head start on
Windows in terms of multitasking. In
the technical support department—as
anyone who has worked in one will tell
you—we needed a multitasker to do our
work effectively. We updated the
customer database records, searched the
knowledgebase, exchanged email, and
took notes. When a customer reported

G
ET

TY
 IM

A
G

ES

The Proof of the Pudding…
by Michael Bolton

www.StickyMinds.com MARCH 2007 BETTER SOFTWARE 13

network administrators, and graphic
designers had different tasks to perform
and applications to run but ran them under
DESQview, too. Using the product
under real (or realistic) circumstances
tends to reveal problems—and tends to
help identify the kinds of problems that
are important to real users.

Quarterdeck grew slowly in its first
ten years, and in that time, the company
didn’t have money to buy test platforms.
Most of the computers that we used in
the support department were provided to
us on an exchange basis; we gave software
to hardware vendors for compatibility
testing, and they gave us hardware in
return. Consider alternate strategies for
obtaining test resources.

Few machines had covers on them, since
we were forever swapping video cards,
network cards, and other peripherals.
Quarterdeck’s IT managers recognized
the information value of the testing that
we were doing and allowed each of us to
choose our own tools. Some of us pre-
ferred the very latest versions of Microsoft
DOS, some the oldest, and some liked
third-party offerings like Digital
Research’s DR-DOS. Some of us used
DOS command-line enhancers, like
4DOS, or other utilities, like Sidekick or
XTree. We used different personal infor-
mation managers, word processors,
databases, spreadsheets, utility packages,
and so on. Rapid testers define the platform
for a product as “anything on which
the product depends that is outside the
scope of our current development project.”
DESQview depended on the hardware
platform and the operating system, but its
success also depended on its compatibility
with applications that ran under it.
Diversity and responsiveness to change
are keys to good platform and compati-
bility testing.

QEMM came with a support tool
called Manifest. With Manifest, we
could see how memory was allocated,
how DESQview and QEMM were set
up, and a lot of things about the state of
the operating system and the hardware.
If we had trouble or questions about the
system, Manifest could help us get answers.
Visibility into the workings makes a
program more testable.

In addition to all of this, there was an

application programming interface
(API) to DESQview, upon which some
of our support applications, like our fax
client, depended. Programmers (and
support people who programmed) used
the API to write DESQview-specific
programs and thereby tested DESQview.
A scriptable or programmable API to a
product makes it more testable. One of
the more important users of your soft-
ware might be another piece of soft-
ware.

Quarterdeck wasn’t a big company in
those days. Whenever anyone in the
company had an issue with QEMM or
DESQview, it was easy to get access to
the developers—we’d simply walk over
and demonstrate the problem. Our
developers were very responsive, since
we could quickly explain the importance
of the task and, to their credit, they
were eager to help solve any problems.
Shortening the feedback loop between
developer and end-user is a powerful
force for beneficial change.

In my experience, companies tend to do
better work when they’re engaged in using
the products that they’re producing. A
product that’s useful to us is at least useful
to someone. We might choose to create
elaborate plans, scripts, test automation,
or even testing departments, and those
things can be valuable. But we get real in-
formation—important information—
when we use the thing ourselves. {end}

Michael Bolton lives in Toronto and
teaches heuristics and exploratory testing
in Canada, the United States, and other
countries worldwide as a consultant and
co-author of James Bach’s Rapid Software
Testing Course. Michael is also program
chair for the Toronto Association of System
and Software Quality. He is a regular
contributor to Better Software magazine.
Contact Michael at mb@developsense.com.

Test Connection

How would things be
different if the people who produce
products or provide services were
obliged to be their own customers?

Got any good stories?

Follow the link on the StickyMinds.com
homepage to join the conversation.

�

