
Using Mind Maps for Software Design

November 2006 $9.95 www.StickyMinds.com

The Print Companion to

TO TELL THE TRUTH

Speak up to those
in power

GAME ON

What you can learn from
game developers

XMarks
the Test Case

12 BETTER SOFTWARE NOVEMBER 2006 www.StickyMinds.com

Test Connection

When Rapid Testers perform stress testing,
we start from the notion that all systems
have limits, and those limits—typically
maximum capacities or minimum
requirements—correspond to potential
vulnerabilities. Then we find ways to
violate those limits to their extremes:
overwhelming the application, depriving
it of some resource that it needs, or both.

Why test at the extremes? Why not
just test at or near the limit? That’s a
reasonable thing to do if we’re testing
for specific, known risks, but in the
Rapid Testing philosophy, stress testing
is a fundamentally exploratory process—
we often don’t know in advance where
or how the system will begin to fall
apart. We may not have a specific pre-
diction about the manifestation of the
vulnerability, so we simply hypothesize
that challenging situations, colossal
amounts of data, or corrupt input will
cause the system to react badly. In general,
an overwhelmingly harsh test will expose
vulnerabilities more quickly, with more
dramatic symptoms. Still, stress testing
requires us to pay special attention to the
observation step and to be super-sensitive
to the unexpected, using multiple quality
criteria and oracles. Exclusively auto-
matic stress tests are very risky, and
completely automatic stress-testing
oracles tend to spot only the problems
that we anticipate. We also need to be
prepared to spot unanticipated problems.

Some of our oracles—principles or
mechanisms by which we recognize
problems—will be driven by inference
and our own observation: The application
shouldn’t crash, slow to a crawl, or
write outside its client window, even if
the specification is mute on those points.
Other oracles will require probing the
system with tools that observe otherwise
invisible things. If our application writes
files to disk, file, folder, or registry, cor-
ruption is a potential stress-test outcome.
An integrity checker or probe is often
easy to write, quick to run, and possibly
useful as a support tool. I’ve seen ideas

file’s attributes to read-only), taking
away the network or printer, putting the
program into an unusual display mode,
preventing access to the database, and so
forth. We can use automation to start
multiple instances of the program and
then ask it to perform huge numbers of
functions simultaneously, using over-
whelming amounts of data. We can also
pass the program incomplete, complex, or
corrupt data. We can stress the program
by running it on a constrained platform,
with minimum system requirements in
memory, disk space, video support, and
so on; we’ll test on a system barely
equipped to do the job, and then we’ll
compromise the system further to see
how the program reacts. We can simulate
complex operations or deprive the pro-
gram of resources by running many other
applications concurrently. We can starve
the program by making it wait for us or
quickly force-feed it data, stressing the
program with respect to time. With each
of these ideas, we should see a graceful
failure and an informative, helpful
report from the program on the nature
of the difficulty.

Stress testing is a technique we can use
at any time during the development
project, as long as someone is willing to
hand us something to test. It’s ideal

from testing tools move into the appli-
cations under test.

Lightweight tools also can help us
flood the application with big data or
transactions. The copy/paste and macro
features in text editors often can be har-
nessed to produce a lot of data for quick
tests. The Perlclip tool by Danny Faught
and James Bach uses a Perl-like syntax
to create character strings in patterns of
your choosing on the clipboard. These
strings can be fed into text fields in
browsers or Web applications as quick
tests or pasted into other testing tools
(be careful that the tools themselves
don’t collapse under the weight of the
data). Some of my most effective stress
tests come from writing Perl and Ruby
code for targeted tasks and probes that
work below the GUI level of the applica-
tion, and from using programs like JMeter
or frameworks like WATIR at higher levels
to simulate large user numbers and trans-
action volumes. None of these tools
requires a huge investment in time or
learning, and other testers are usually
willing to provide support.

We can get some stress ideas from the
Product Elements section of the Heuristic
Test Strategy Model. We can compromise
the program’s structure by deleting or
renaming a needed file (or setting the

G
ET

TY
 IM

A
G

ES

More Stress, Less Distress
by Michael Bolton

www.StickyMinds.com NOVEMBER 2006 BETTER SOFTWARE 13

when programmers can do some degree of
stress testing at the unit level. Programmers
might not wish to go to the same extremes
as testers, and we might not want to run
a full stress-test suite on every build of
every component (it could cause the unit
tests to become unacceptably long). Still,
some stress testing at low levels can help
us identify certain vulnerabilities more
rapidly and easily.

When a tester pushes a system to
extremes and finds a vulnerability, a
common reaction is “That could never
happen.” Alas, the problem has happened;
you may have to phrase it gently and
dispassionately, but it is a fact. Another
reaction is “No user would ever do
that.” There are too many possible
users, too many motivations, and too
many circumstances to say “never.”
Users can be malicious, like black hat
hackers, identity thieves, or embezzlers.
Even benign users might be hurried,
clumsy, forgetful, bored, or unexpectedly
creative in the use of the program. It
would be a rare user who disconnected a
network cable in the middle of a trans-
action—but my wireless modem does
something like that on a regular basis.

Aside from being wrong, these reactions
are also irrelevant from at least three
different, related angles. First, there may
be more than one way to trigger this
vulnerability. Second, if the problem is not
well understood, then its consequences
won’t be known either. As Richard Feyn-
man said in his appendix to the Rogers
Commission Report on the Challenger
space shuttle accident, when something
is not what the design expected, it’s a
warning that something is wrong. “The
equipment is not operating as expected,
and therefore there is a danger that it can
operate with even wider deviations in
this unexpected and not thoroughly un-
derstood way.” When a system is in an
unpredicted state, it’s also in an unpre-
dictable state.

Testing may focus on technology and
ignore the human component of the sys-
tem. The 2003 blackout in northeastern
North America could have been avoided
if the system operators had had sufficient
clarity and confidence to intervene
appropriately; software bugs and uncer-
tainty undermined them. When there’s an
abnormality in the system, we probably
want to get the user’s attention. This
means that the application needs to
walk the tightrope between giving the
user needed information and distracting,
annoying, or panicking her. If we model a
stressed-out user, we’re likely to identify
vulnerabilities that she’ll trip over in
the product.

Have mercy. The numbers and natures
of potentially stressful conditions are
enormous. Testers should work support-
ively and sympathetically with developers
tasked with shoring up the program’s
vulnerabilities.

The measure of a system is not how
it handles routine transactions, but how it
deals with exceptional circumstances. {end}

Michael Bolton lives in Toronto and
teaches rapid software testing—a
methodology and course that he developed
in collaboration with James Bach—in
Canada, the United States, and other
countries. He is also program chair for the
Toronto Association of System and Soft-
ware Quality. He is a regular contributor to
Better Software magazine. Contact
Michael at mb@developsense.com.

Test Connection

Let's share stories: How do you
push the boundaries of a system?

What are some of the more creative
approaches you've taken to stress
testing? What have they revealed?

Follow the link on the StickyMinds.com
homepage to join the conversation.

�

“When a tester pushes a system to
extremes and finds a vulnerability,
a common reaction is ‘That could

never happen.’”

