
October 2006 $9.95 www.StickyMinds.com

The Print Companion to

OFFICE SPACE AS ART

Improve your
team’s surroundings

and its output

GET CULTURED

Fourteen principles
to better your products

A Safe Approach
to Risk-based Testing

12 BETTER SOFTWARE OCT0BER 2006 www.StickyMinds.com

Test Connection

Function testing is easy: Identify all
functions in the program (and the parts
of the platform upon which the program
depends), and test each one. Domain
testing is only a little harder: Identify
anything in or around the program that
can vary, determine sets of all valid and
invalid instances of each value, and use
at least one representative of each set in
a test. But there are catches.

Like functions, the number of things
that can vary about a program is large.
The set of valid values for each variable
is even larger, and the set of invalid
values for any variable is infinite. Good
domain testing also involves variables in
combination with one another. Once
you’ve tested every function—a huge
number for all but the most trivial
programs—dealing with a large number
of infinities (and combinations of them)
should be a minor step.

One risk in domain testing is that
we’re not talking about the same thing.
Some use “domain” to describe the
business and product’s development
context, as in Eric Evans’ book Domain
Driven Design. Traditional testing
sources refer to the program domain as
the data that the program accepts and
processes. In mathematics, the domain is
the set of all input values for a function.

“Domain testing” could mean any of
these things. Identify and discuss differing
interpretations to highlight potential
ambiguities and to welcome and generate
test ideas based on as many meanings as
possible. To some degree, Rapid Testers
embrace ambiguity: We can identify it
and thereby can mitigate it and reduce
risk, and it can help us think more
expansively about test ideas. Consider a
variety of possibilities; risk is buried
beneath unconsidered possibilities.

In traditional parlance, domain testing
involves identifying equivalence classes—
sets of things that we expect the program
to (mis)treat in the same way—making
partitions between these classes, and
identifying interesting elements within

• Convenient values are easier to use or
to test with.

Choosing an element with several of
these attributes may allow us to perform
fewer tests. If one element doesn’t fulfill
all of these attributes, then another
might be better, or multiple tests might
be necessary to address multiple theories
of error. Don’t try to get to them all—
you can’t. Domain testing is heuristic; it
helps us to solve a problem, but it’s fallible.
Focus on risk, and use a diverse set of
ideas to choose values.

Maximum and minimum acceptable
values for input fields (and one more
than the maximum and one less than the
minimum) are worth testing because of
risks like the developer’s mistaking
greater than (>) for greater than or equal
to (>=), or equal to (==) for the
assignment operator (=). Most tests of
this kind focus on business-oriented
boundaries, such as the maximum dollar
amount for a given field, which indeed
might be important.

However, there might also be invisible,
internal boundaries, such as the limits of
a (signed or unsigned) data type, over
which the program treats the data differ-
ently. Good unit testing helps with that,
but you may not be in a context in

them. Rapid Testers call this “dividing
and conquering the data”—not only
data processed by the program but also
data about operating platforms, peripheral
devices, user profiles, and everything
else surrounding the program. Domain
analysis can make this huge task easier.

When modeling the product, we save
time by using equivalence classes as
shorthand. Saying “Internet Explorer
versions 5.0 and above and compatible
browsers” saves us from listing every
supported browser—but be sure to ask,
“Compatibility or equivalence with
respect to what?” Two “compatible”
browsers might have equivalent
JavaScript interpreters but not equivalent
handling of Cascading Style Sheets, dif-
ferent display resolutions, or malformed
HTML. We save time by identifying
classes that are equivalent with respect
to some risk, oracle, or theory of error.
So how do we choose what to test?

Within each equivalence class, there
are subclasses of elements:
• Boundary values represent a limit or

transition point between one equiva-
lence class and another.

• Best representatives are most likely
to reveal important bugs.

• Typical values are equivalent values that
have a high probability of being used.

G
ET

TY
 IM

A
G

ES

Master of Your Domain
by Michael Bolton

www.StickyMinds.com OCTOBER 2006 BETTER SOFTWARE 13

which unit tests are trustworthy; try a
few quick tests of values on either side
of important powers-of-two boundaries:
256 (8 bits) or 32,767 (a signed 16-bit
value). On my Windows XP system,
Perl’s Time::Local date-formatting module
seems to display a valid date when fed
2,147,465,643, but 2,147,465,644 gives
no output. Feeding the function
2,147,483,648 (the largest positive
signed 32-bit value) helped me to find
that unexpected boundary. (See the
StickyNotes for more on data storage
and display.) Rapid Testers usually start
big; if the program doesn’t constrain
input properly, an outrageous value is
most likely to expose the problem.

Good equivalence partitioning isn’t
just a simple division between ranges of
valid and invalid input data. Two valid
16-bit integers can be added or multi-
plied to produce a result larger than a
16-bit integer. If the developer hasn’t
allocated enough space for the result,
bizarre effects can follow; so consider
using combinations of values, and force
out-of-range output values, too.

Some compilers and languages handle
data typing and overflow issues invisibly;
others don’t, so knowing the program-
ming environment for the product can
influence our view of the risks. On the
other hand, we may know nothing at all
about the development tools used to
build parts of the platform. Platform
testing—testing the things upon which
our program depends but that aren’t part
of our current development project—can
be partitioned for equivalence as well.
Cover the territory better by running one
set of tests on one platform and another
set on another platform; then vary the
platforms in later test cycles.

Since domain testing is about sets, read
about elementary set theory. The empty
set is a subset of any set, so entering no
value at all or clearing out a provided
default value often can reveal bugs.

Another subset of any set is the set
itself. In a program I tested recently,
merchants who accepted credit cards
were classified by a four-digit category
code. I had a reference table that identified
the valid and invalid values, but the values

weren’t sequential and there was no
pattern to the data that could be
expressed as a set of boundaries. Rejecting
a valid value, or accepting an invalid one,
would lead to bad data in the database.

I did a couple of quick manual tests—
typed a few alpha keys and held down
the shift key while running my finger
across the number keys. The program
only beeped, so I inferred that only digits
would be accepted. There were 3,000
valid values and 7,000 invalid ones but
no evident boundaries. The most rapid
approach in this case was to try all values
using automation. I wrote a quick Perl
script, did some other tests while the
script ran in the background, and found
exactly one bug in the table: The most
recent addition was being rejected.
“New ones vs. old ones” has since become
an equivalence partitioning heuristic for
me, and testing an entire set—when
feasible—might be the most appropriate
domain-testing technique. {end}

Michael Bolton lives in Toronto and teaches
heuristics and exploratory testing in Canada,
the United States, and other countries as part
of James Bach’s Rapid Software Testing
course. Michael is also program chair for the
Toronto Association of System and Software
Quality. He is a regular contributor to Better
Software magazine. Contact Michael at
mb@developsense.com.

Test Connection

Sticky
Notes

For more on the following topics, go to
www.StickyMinds.com/bettersoftware

� Data storage and display
� More on Domain Testing

I love hearing stories
about hidden or unexpected

boundaries—where something
challenges our preconceptions of
what is a boundary and what isn't.

Got any stories to share?

Follow the link on the StickyMinds.com
homepage to join the conversation.

�

