
April 2006 $9.95 www.StickyMinds.com

The Print Companion to

LOG ON
Create log files with

long-term value
PAGE 10

ANALYZE THIS
The History of

Automated Code Analysis
PAGE 18

PAGE 24

Try

12 BETTER SOFTWARE APRIL 2006 www.StickyMinds.com

Test Connection

Where in the World?
by Michael Bolton

Wherever money and products go, soft-
ware usually follows closely behind. Your
organization’s software is more valuable
the more places it can go. “Localization”
is the generally accepted term for the
process of adapting to a new local market;
“internationalization” refers to the
process of building the product to be
adaptable. These tasks have traditionally
been difficult, although technologies for
internationalization have gradually
improved. For example, the Unicode
standard for representing international
characters and glyphs has been adopted
and is increasingly better supported by
operating environments and programming
tools. Pragmatic development teams
now realize that if the product is intended
to serve international markets, then text,
dialogs, graphics, and the like should be
provided as separate resource files—not
hard coded within the application—so
that they can be translated easily.

To Rapid Testers, these innovations
are welcome, but Rapid Testing tries to
take a view beyond purely functional
considerations by using the word
“localizability” as a guideword heuristic.
(A heuristic is a fallible method for solving
a problem; it serves as a useful stand-in
for more thorough and rigorous analysis
when time is at a premium.) Our goal is
to discover risks associated with the
product’s operating differently with re-
spect to some distinct locale. We prefer
“localizability” to “internationaliza-
tion,” because the new target market
may not be in a different country at all.
For example, reporting regulations and
standards might differ across state lines.
Different parts of a country might be in
different time zones, and some locations
might support daylight-saving time
while others do not. Even though it
operates within a single country, a Web
site, Internet kiosk, or bank machine
might provide support for multiple
languages. Some local differences are
logistical; you can count on the big

product managers may consider the
extra work worthwhile depending on
the size of the market.

For Web-based applications, look for
strings that set locale differences, like
US_en for “US English” in the URL for
GET messages. What happens if you try
to change this to another supported
language (such as “CA_fr” for Canadian
French) or to an unsupported locale and
language (such as “XX_zz”)? Does the
product recover gracefully if you simply
delete elements from the string (such as
“US_e”)?

Not too long ago, I used this
approach to find bizarre behavior in an
application that had limited local language
support. Interestingly, the problem man-
ifested itself most obviously by omitting
certain graphics files and corrupting the
intended page layout. In that case the
consequences were minor, but it prompted
me to look for other mishandling of the
GET message that could have resulted in
security vulnerabilities.

Currency and foreign exchange support

hardware store to stock fewer snow
shovels in Miami than in Minneapolis
and to carry a wider variety of seasonal
goods in Fairbanks than in Los Angeles.

Does your test strategy account for
these kinds of variations? Can the product
be reconfigured quickly, easily, and
automatically to work in another location?
Do your system and end-to-end test
scenarios account for different locations
and time zones for purchase, billing,
and delivery? What if someone buys a
product in Reno, Nevada (where there is
no sales tax), and returns it just across the
state border in California (where there is)?

You might not have considered the
possibility that your software or service
might be used in another country. In
Canada, where I live, there are both federal
and provincial retail sales taxes. Tax
rates change from province to province,
and one province has no retail sales tax.
The federal sales tax is sometimes levied
separately and sometimes blended with
the provincial sales tax in a single line
item. That adds complexity, but your

G
ET

TY
 IM

A
G

ES

www.StickyMinds.com APRIL 2006 BETTER SOFTWARE 13

Test Connection

make for some interesting testing challenges
related not only to internationalization
but also to maintainability and test design.
Are currencies formatted properly? If
your product deals with multiple currencies,
can the product handle updated exchange
rates quickly and smoothly? Can your
test tools and data files be adapted to deal
with constant and instantaneous change?

There are cultural considerations to
localization. Holidays and weekends
may result in differences in the way business
periods and reports are handled. Graphics
and icons appropriate for one culture
may be meaningless to another. The
traditional North American rural mailbox,
commonly seen in electronic mail
programs, had little relevance for European
countries, where door-to-door mail delivery
is the norm. Even certain colors and
numbers might have cultural signifi-
cance. The Chinese word for the number
four sounds like the word for death and
is consequently very inauspicious. If you
regard this as trivial, consider whether
your customers would happily buy a
computer called “G-Death.”

There are several ways to display text on
GUI systems. The recommended approach
is to use operating system calls to dis-
play text and to keep that text separate
from the graphical elements of the product.
Text embedded within a graphic usually
makes localization more difficult and
more expensive—yet everything on the
screen looks graphical to some degree,
so how can we recognize this problem?
One way is to use a string-dumping
program to search for the text within the
program’s files; if you don’t find that
text in the string dump, there’s an indi-
cation that the text might be embedded
in a graphic. On Windows systems, we
can perform an instant analysis of a
screen element by trying to grab text
from it (using products like TechSmith’s
SnagIt, Boilsoft’s Resource Hunter, or
Microsoft Visual Studio’s built-in
resource editor). For Rapid Testers, the
fact that you can’t do something with a
given tool is often revealing.

If you have access to the source for
the program’s resources, try replacing all
of the product’s text strings and captions
with the letter Z—you can use a bit of

script in a language like Perl, Ruby, or
Python to do this quickly—and then
rebuild the product. If you find any text
other than Z on the screen, you have
evidence of hard coding within the
application, which makes the product
much harder and riskier to translate.

Another approach is to replace
strings with Egg Language, in which
“egg” is placed before every vowel
(theggis eggis eggan eggexeggamplegge);
then try using the program, looking for
things that appear normal. Egg Language
has several virtues. First, it can be encoded
easily with a script (and writing such a
script is a fine exercise for a tester who is
learning automation). Second, it can be
decoded (weggith seggome smeggall
eggeffeggort) by a human reader, which
might be important for navigation if
you’re not completely familiar with the
program. And finally, it lengthens signif-
icantly the strings in the program. That’s
important if the product is to be translated
into European languages such as German,
where the translated strings will be
longer than the English versions and
may require more
screen space. Non-
European languages
present more diffi-
cult challenges,
such as text that
displays right-to-
left or ideogram-
matic script.

Testers are
fallible. We may
need to consult
with experts, since
there are too many
dimensions to in-
ternationalization
for non-specialists
to recognize every
cultural difference.
However, we can
be aware of the
significance of
those differences
and aware of the
potential for trouble
if our organization
is oblivious to
them. Test man-

Don’t Stop Now!
Log on to StickyMinds.com and join

Michael Bolton and your peers in a

conversation about this topic. At the end of

the digital column, add your views or just

read what others have to say.

agers can help by fostering cultural diversity
as one of the criteria for a strong test team.
Individual testers can help by at least
recognizing that things can be different
when software goes elsewhere. {end}

Michael Bolton lives in Toronto and
teaches heuristics and
exploratory testing in Canada,
the United States, and other
countries as part of James
Bach’s Rapid Software Testing course. He
is program chair for the Toronto
Association of Software Quality and is a
regular columnist for Better Software
magazine. You can contact Michael at
mb@developsense.com

