
TesterPI:

March 2006 $9.95 www.StickyMinds.com

The Print Companion to

Performance
Investigator

PAGE 20

LIFE'S NOT
A DRESS REHEARSAL

Plan for emergencies now
PAGE 14

CASTING CALL
Hire a tester with
an agile attitude

PAGE 16

LIFE'S NOT
A DRESS REHEARSAL

Plan for emergencies now
PAGE 14

CASTING CALL
Hire a tester with
an agile attitude

PAGE 16

8 BETTER SOFTWARE MARCH 2006 www.StickyMinds.com

Test Connection

Taking Our Act on the Road
by Michael Bolton

In the Product Elements section of James
Bach’s Heuristic Test Strategy Model, he
extends the traditional definition of
“platform” beyond the hardware or
operating system, as “any part of the
product that is outside of the control of
the current project.” The platform can
include protocols, application frame-
works, and runtime libraries—even
those written within our own organization,
that we cannot change in the scope of
the current project. We’ll use our extend-
ed concept of “platform” to expand the
boundaries of what portability means.
Portability is about re-engineering the
product, including our test strategy for it,
for the purpose of adapting the product
to some other platform.

Portability is subtly different from
compatibility. Compatibility testing tries to
answer the questions “Do we play well with
others?” and “In our current environment,
how might we get into conflict with other
things?” Portability asks, “Can we take
our act on the road? What might we
expect—or not expect—as the result of a
deliberate choice to change the product’s
home base?”

There are two dimensions of change
when we port something: We’re changing
the product’s code because we’re changing
its platform. One plausible risk is that
we’ll neglect some aspect of the changing
territory. This is a general systems
problem. Our concept of the original
platform is a model; our concept of the
new platform is too. To test effectively,
we need to recognize the ways in which any
model is an incomplete representation—
usefully similar, but necessarily simpler
than the thing it represents. We’ll likely
need to refine our existing models and
create new ones. Rapid Testers look for a
rich starter set of modeling ideas in the
Product Elements section of HTSM—
structure, function, data, platform, and
operations—and then add other ideas
along the way.

The first thing to keep in mind is that

to have ongoing conversations with our
clients about risk. The client may lose
interest in the value of supporting a
particular version of some platform
component when that value is balanced
with the additional costs of testing and
support. Also in collaboration with the
client, we can choose to sacrifice some
coverage depth (for example, testing a
small number of browsers exhaustively)
and increase the breadth of coverage. To
do this, we might use heuristic tools such
as test matrices, in which we perform
some test ideas on some platforms and
other ideas on other platforms, such that
we sparsely cover a large table of tests
versus platforms (see the StickyNotes for
more information). We could try to
streamline the test effort by searching the
Web for known problems with existing
browsers and designing tests that help
make sure that our application doesn’t
trip over those problems.

If we build our product with different
compilers or in a different language, our
developers might not find library support
for some of the functions that we need;

concepts like “Windows,” “processor,”
and “Firefox” are themselves incomplete
descriptions of some element of the
platform. Each element on which the
product runs may have a number of
versions, each with subtle differences.
For example, some browser versions
might have bugs in the way that they
parse markup languages; others might
have bugs in the way they implement
some related technology, such as
Javascript or CSS. Consequently some of
our existing, proven functionality might
not work at all with some version of
some component. The fixes that we
make might break existing functionality
in the other versions of that component,
and the “final” fix could break our
shipping product. Good regression tests
should help to defend against that, but
every bug is based on something that
we’ve failed to anticipate. If our code
doesn’t properly address the new platform,
our tests might not either.

So What Else Can Testers Do?

One important thing that we can do is

G
ET

TY
 IM

A
G

ES

www.StickyMinds.com MARCH 2006 BETTER SOFTWARE 9

Test Connection

those functions will have to be written for
the application. We can apply the heuristic
that newly written technology may not be
as robust as libraries that come with the
operating system or compiler. If those li-
braries are in wide distribution or have

been around for a while, we might choose
to focus tests on functionality that our
own developers have had to build specif-
ically for the project. A good relationship
with our developers can help us identify
the areas they believe to be risky. Sketching
out any structural diagrams of the appli-
cation might help us to see the interfaces
between changed and unchanged code,
where brittleness might expose itself.

There’s often a buried presumption
that the compiler and operating system
will help to manage and make abstract
the differences between hardware
platforms. That doesn’t mean that the
platforms are all the same. As Joel Spolsky
says, “All non-trivial abstractions are to
some degree leaky” (see the StickyNotes
for a link to Joel Spolsky’s “The Law of
Leaky Abstractions”). For example, if we
port an application from a desktop platform
to a handheld, we can’t reasonably expect
access to the same amounts of long-term
storage; we’ll need to think about setting
different constraints for stress tests. We’d
like to believe that we will anticipate such
problems in our analysis, but will we
anticipate all of them? Can we think of
tests of different reserved characters, byte
ordering, data encoding, threading models,
signals, interrupt handling, exception
handling, and regular expressions? Note
that some operating systems (like Unix)
are case-sensitive with respect to file names,
while others (like Windows) are not.

Will our product need some resource,
such as a font, that might not be available
on the new platform? Will it still look

good under different display resolutions?
If we move some portion of our product
to an embedded system, can we even
count on having a display and a keyboard,
or will we need special equipment to
provide input and output for our tests?

We might choose to port a program to
a different programming language for the
explicit purpose of taking advantage of
some of the features of that language, in
which case our test oracles might have to
change, too. I’m in the process of trying
to port PerlClip, a testing tool written by
Danny Faught and James Bach. It helps
generate test data quickly in the form of
text strings, using Perl’s string
handling syntax, before popping these
strings into the Windows Clipboard.
When I port that program, I’ll have to
remember that Perl and Ruby have subtle
differences in their syntax. I’ll have to
figure out whether I want to make the new
product compatible with Perl’s conventions
or Ruby’s; my tests will need to reflect that
choice. Porting a program usually means
porting its test strategy.

Even if we’ve automated all our tests,
our testing tools might suffer from the
same kinds of portability problems as the
application that we are testing. Will we
have to adapt or change our tools to fit
the different environment? Will we need
new or different equipment for testing?
Do we have the training and resources to
integrate them into our test lab and to
use the new test platforms skillfully?

Another risk is that our tools might be
too compatible with the new platform.
For example, to help make scripts more
portable between Windows and Unix,
Perl’s compiler helpfully and invisibly
converts forward slashes to backslashes
in filenames. That’s valuable most of the
time, but what if it helped to obscure an

Sticky
Notes

For more on the following topics, go to
www.StickyMinds.com/bettersoftware

� Test Matrices
� “The Law of Leaky Abstractions“ by
Joel Spolsky

Don’t Stop Now!
Log on to StickyMinds.com and join
Michael Bolton and your peers in a

conversation about this topic. At the end of
the digital column, add your views or just

read what others have to say.

important platform difference—where a
slash in the wrong direction would cause
a radical and unwelcome change in
behavior? In what other ways might our
tools inflict help upon us?

General systems thinking tells us that
the product is always part of some larger
system, and that adapting the product to
a new platform is part of maintaining
that system. If that’s so, then why not just
make portability a subset of maintainability?
If it helps your thinking not to follow the
HTSM strictly, but merely to use it as a
point of departure for creating your own
test strategy model, then by all means go
ahead. Models are useful only to the
extent to which they fit the context, and
context-driven thinking requires our test
strategy to be appropriate to the task. For
our purposes, though, we’ve noticed that
our platforms rarely remain static, and
thus it helps us to keep portability in
mind. We’ve found that thinking explicitly
about portability strengthens our strategies
and helps us to anticipate change. {end}

Michael Bolton lives in Toronto
and teaches heuristics and
exploratory testing in Canada,
the United States, and other
countries as part of James
Bach’s Rapid Software Testing course. He
is program chair for the Toronto Associa-
tion of System and Software Quality and
is a regular columnist for Better Software
magazine. You can contact Michael at
mb@developsense.com.

There’s often a buried presumption
that the compiler and operating
system will help to manage and
make abstract the differences
between hardware platforms.

