
A Critical Line
of Defense

A R M I N G Y O U R
S O F T W A R E
D E V E L O P M E N T
P R O C E S S

February 2006 $9.95 www.StickyMinds.com

THE BEST
LAID PLANS...

Let principles
be your guide

PAGE 6

AGILE SCM?
Oh yeah,

it's possible
PAGE 30

The Print Companion to

PAGE 24

8 BETTER SOFTWARE FEBRUARY 2006 www.StickyMinds.com

Test Connection

Maintaining Your Course
by Michael Bolton

Maintainability is an attribute that, in
my experience, doesn't receive a lot of
attention from testers. In general, main-
tainability is about a product's ability to
stay the same or to adapt to change. For
Rapid Testers, maintainability is the
guideword heuristic that reminds us of
the need for retesting and the need to be
able to reuse testing ideas.

Things don't stay static in our world.
The business environment changes, the
product changes as new development
happens, the people around the product
change—not only the developers and the
testers, but also the users, the buyers, and
the entire project community. Some of
our test strategy should focus on continu-
ity. Parts of the product need to be
insulated from the change that’s happening
around them. We want change to happen
consciously, not inadvertently. To a great
degree, that’s what confirmatory regres-
sion tests are for—to make sure that the
things that used to work still work. But a
complementary part of our testing strategy
should be to note the costs, values, and
risks of making changes to the product,
and to be aware of the impact on the
product and on the test effort.

In order to generate ideas that broaden
and deepen our test coverage and strategy,
Rapid Testers try to extend conventional
notions beyond their traditional senses.
When people talk to me about
maintainability on a project, they
refer to things like configuration manage-
ment, code readability, documentation,
or object orientation. But surely there’s
much more to maintainability of a product
than that. We might have the parts and
the technical manuals that we need to
repair a car, but lack the equipment, the
expertise, and the time to do it. What
information might we need to maintain
some aspect of a software product?
What skills, tools, or resources might
someone require?

We could think about a product’s
maintainability in terms of the code, but
what other aspects of the product might

important to make alliances with
developers. Something that is more
testable, through scriptable interfaces
and logging, is more retestable and
ultimately more maintainable. However,
it could be easy to fall into the trap of
believing that unit tests and regression
tests will help us spot problems reliably
after modifications have been intro-
duced. If we have a big regression suite,
part of the maintenance effort should be
to revisit the tests regularly and critically.
Are they still likely to reveal important
problems? Are there new risks that
they’re missing? Have we selected test
tools that will be compatible with the
product’s target platforms?

It would be nice if we were always
working on new projects with new code,
but many testers come to projects that are
several major versions old—even new
software spends a lot of time interacting
with very old software. Maintenance may
be done in a hurry by people who haven’t
had the experiences of the original team.

change? File format, configuration
information, platform, user interface,
documentation—name any component
of any model of the product and that
component will stay the same, evolve in
some way, or disappear.

Questions about risks associated with
change and maintainability help me
focus on the areas of the product I need
to test and retest:

� In the face of change, what existing
behavior must I confirm?

� What must I investigate anew?
� What matters?
� What will the needs be—retesting

the whole system or targeted
retesting?

� What parts of the product might
be brittle or hard to test?

Advocates of agile processes tout
automated tests to provide rapid feedback
when change happens, and indeed
automated tests are potentially useful
and powerful. Here, it’s useful and

G
ET

TY
 IM

A
G

ES

10 BETTER SOFTWARE FEBRUARY 2006 www.StickyMinds.com

Writing automated unit tests for every
change is the prescribed agile approach.
Automated test development is a strong
asset for maintainability, but it isn’t free;
writing an automated test can often take
a good deal more time than a fast manual
test. So for each test idea ask, “Is the risk
of some failure sufficiently low that I can
perform a very quick, trivial test right
now, one that I probably won’t need to
repeat? Would it be OK simply to add
this risk to the bottom of the risk catalog?
Or should I write a script that can throw
a lot of data at some program, or that can
save a lot of time if we end up using it
often?” Heavily scripted tests for an
application that is in flux will require a
lot of maintenance effort. Maintaining test
scripts takes time away from testing—
actively operating and observing the product.

Maintainability influences the way I
learn about the project, which in turn
influences the way I think about the
product’s documentation. In most
projects I’ve worked on, documentation
starts with a lot of energy and enthusi-
asm—and volume—and becomes less
and less useful as it falls out of sync with
the product. More extensive documenta-
tion requires more effort to maintain, so
one approach for Rapid Testers is to bias
ourselves toward less documentation
rather than more. Don’t try to write
down everything at the beginning, when
we know the least about the task at
hand. Test, learn, and iterate. If we need
more documentation, we can add it
where it’s needed over the course of the
project. Instead of imagining what might
be done and writing detailed, step-by-
step test scripts, think about cataloging

� How might my approach change if
my assumptions aren’t borne out?

If you’re in a position to comment
about the maintainability of the overall
product, beware of asserting simply that
the product is not maintainable.
Maintainability is a compared-to-what
question. All products are ultimately
maintainable, because doing nothing at
all is one option; making changes
at some cost and at some risk is the
alternative. Identify those costs and
risks, and compare them with the value
that the changes bring. {end}

Michael Bolton lives in Toronto and
teaches heuristics and exploratory testing
in Canada, the United States, and other
countries as part of James Bach’s Rapid
Software Testing course. Michael is a
regular contributor to Better Software
magazine and program chair for the
Toronto Association of System and
Software Quality. Contact Michael at
mb@developsense.com.

risks and test ideas, then let tester skill
and creativity, combined with good note
taking, record what was done.
Exploratory testing, if done in an
unstructured way, could lead to an
unmaintainable test effort; consider
Session Based Test Management (see
the StickyNotes) as an antidote for
information loss.

Rapid Testers shouldn’t escape their
own scrutiny. I use maintainability to
help me think critically about where I’m
spending time and the potential return on
investment. I try to think about how I
take notes on what I’m doing or learning:

� Will a sketch, a few rough notes, or
a concept map help me remember
and stay organized?

� Am I absorbing and recording
information mostly for myself, or
will I need to present my work to
other people?

� Are their needs served better
by conversations supplemented
with my notes, or by detailed,
formal reports?

� What information do people need
immediately?

� What will they need in the longer
term?

� What tools am I using for specific
tests?

� Will people need to use my
scripts again, or are they one-off
experiments?

� When I’m testing or developing
something, what are the odds
that I’m going to deal with this
artifact again?

� Is the work that I’m doing right now
for me, or is it for someone else?

Sticky
Notes

For more on the following topic, go to
www.StickyMinds.com/bettersoftware

■ Session Based Test Management

A Rapid Testing Exercise:

Try performing an instant analysis. Choose some specific aspect of the product or its universe—consider the project environment, the product
elements, and the other quality criteria in the Heuristic Test Strategy Model for ideas. Start by asking, “Suppose that this thing stays the same as
things around it change—what do we need to do to ensure that stuff still works?” Then ask, “What if this thing changes? What else might be
affected by that change? What risks would emerge? What are our oracles—what principles or mechanisms could we use to recognize a problem?
How would our coverage models change? What test activities might we add, drop, or refine?”

After you’ve gone through the exercise yourself, bounce your ideas off a colleague. Identifying potential risks is a skill that improves with practice,
but it’s also important to remember that risk involves prediction and projection. We will get some things wrong. That's OK. As Niels Bohr said,
"Prediction is very difficult, especially about the future." It's nice to be prescient, but we're not omniscient.

Don’t Stop Now!
Log on to StickyMinds.com and join
Michael Bolton and your peers in a

conversation about this topic. At the end of
the digital column, add your views or just

read what others have to say.

Test Connection

