
January 2006 $9.95 www.StickyMinds.com

BULKING UP
Strengthening Your

Soft Skills
PAGE 16

ARE WE THERE YET?
Creating Project

Dashboards to Display
Project Progress

PAGE 22

The Print Companion to

with

Character B Y T O D G O L D I N G

PAGE 30

Code

In the last issue, I introduced the first
part of the Quality Criteria dimension of
James Bach’s Heuristic Test Strategy
Model. People often refer to these quality
attributes as “the -ilities,” properties of
the product that customers might find
desirable: capability, reliability (which
under the HTSM includes security),
usability, scalability, performance,
installability, and compatibility.

The second part of the Quality
Criteria list focuses on development, or
producer-facing attributes. The HTSM
identifies supportability, testability,
maintenance, portability, and localizability.
The first two of these attributes are so
important that I’m going to dedicate this
entire column to them.

Rapid Testers use Jerry Weinberg’s
definition of quality: “Quality is value to
some person.” The end-user is just one
member of the project community whose
values matter. We also attempt to
produce value and reduce cost for the
organization that is developing the
software. We think about supportability
and testability to remind us to look for
problems that have a real impact on
support people and the testers themselves;
they are also customers of the testing
effort. Both groups can and should ask
for supportability and testability.

In the early ‘90s, I worked for a
company called Quarterdeck. Its flagship
products were DESQview and QEMM-
386, multitasking and memory-
management utilities for DOS running
on Intel-based personal computers. The
PC environment in those days was a
mishmash of mostly compatible
hardware, but because our products
worked so closely to the metal, they were
more vulnerable to compatibility
problems than most other products.

I worked in technical support,
then testing, and later in program
management. Those departments were
closely linked—everyone used the products

number so they can call you directly if they
see a problem in the product. Some support
staff may aspire to become testers, in which
case you have a farm team in-house.

A support person will be the first to
tell you that coherent and consistent
error messages make a big difference to a
program’s supportability. Testers should
try to trigger all kinds of exceptional
conditions while testing. We do that
primarily to expose risk; unforeseen
conditions that the program doesn’t
handle put the program in an unpredictable
state. But even if we don’t find bugs, we
look closely at each error message and
other feedback supplied by the program.
Does the message clearly and accurately
describe what’s going on? Does it help
the end-user solve the problem—or if
that’s not feasible, would the message
assist support staff or developers? Does
the error message uniquely identify the
point of failure in the program? If the
problem is a missing file or resource,
does the error message specifically identify
what’s missing? A support person will
identify a problematic error message for
you right away (“A .DLL could not be
found.”—OK, but which .DLL?).

in his daily work, so everyone tested to
some degree. Ever since then I’ve been
aware that good technical support people
are natural allies for testers and can be
highly valuable to the testing effort.
They’re experts with the product, they’re
direct conduits to the customers, and
they’re keenly aware of the kinds of
problems that make telephones ring and
support forums choke. As testers, we
want to prevent those things. We reduce
cost and add value when we find
bugs or anything else that would cause
problems in the field or extra work
for the support staff.

Cultivate relationships with your
support people. They can help you
understand what supportability means in
your context and what’s important to
customers. Support people may identify
risks that you may not have considered,
and they can help estimate the cost and
impact of a bug. Most of them will be
delighted to help you find problems and
will advocate specific bug fixes. Support
people may have access to tools, tricks, or
tips that testers can use. Swap useful
documents, diagrams, or scripts. Make
sure that the support people have your

10 BETTER SOFTWARE JANUARY 2006 www.StickyMinds.com

Test Connection

Support for Testing,
Testing for Support
by Michael Bolton

G
et

ty
 Im

ag
es

Test Connection

www.StickyMinds.com JANUARY 2006 BETTER SOFTWARE 11

Many of the attributes that add to a
product’s supportability also add to its
testability. By testability, Rapid Testers
primarily mean visibility and controllability.
We evaluate the program based on the
means it provides for service people to
support it, testers to test it, and developers
to debug it. Does the program produce log
files? Can we configure logging to provide
varying levels of detail? Are the logs
consistently structured? Can they be
scanned quickly and easily, either by a
human or by a program written in a
scripting language? Is each event that is
recorded in the file precisely time stamped

and well structured so we can write scripts
that parse, filter, and summarize? Log files
are a feature of the product—are we testing
and evaluating them, or are we taking them
for granted and thereby possibly missing
bugs? What other reports does the
program produce? Is there information in
them that might help in the testing or
support effort? What information is
missing that we would like to be able to
see? Can we query the program on the fly?

We’d like to be able to automate
certain functions of the program or
our interaction with it, so we ask for
controllability—scriptable interfaces,
typically using languages like Perl,
Python, or Ruby, to reduce the need for
expensive front-end tools. When the
program provides a means to control it,
we can use automation to operate the
program, to set up data and manipulate
it, to probe the state of the product, or
to install and configure it. Programs
that can be controlled remotely might
add to testability and to supportability
if they can reveal useful information.
The emphasis is on doing things
efficiently—getting the machine
to do the work—which leaves us more
time for critical thinking, observation,
and evaluation.

Note that when Rapid Testers talk
about testability, they’re referring to
visibility and controllability of a
program. In some places, “testability”
has another meaning; it is sometimes
equated with “falsifiability,” or

“decidability,” which is the ability to
make a true-or-false or yes-or-no statement
about the program. That’s a valuable
notion, but there are two pitfalls to avoid.
The first is that a falsifiable statement
may not tell the whole story of an
observation we could make. The
statement might be too vague to be
testable. For example, “The application
shall exhibit responsiveness.” Conversely,
it might be precise in a way that may not
really matter to anyone. For example, if
an application, as specified, must return
a result within one second, give or take
five milliseconds, does that difference

matter? It might, but if not, we could be
tempted to create overly precise tests that
distract us from more important things in
the mission.

The second pitfall is that jargon
words like “testability,” “stress testing,”
or “functional testing” may take
on different meanings in different
organizations. Someone who claims that
a program is testable (meaning falsifiable)
may not understand when we assert that
the program is not testable (meaning
visible or controllable). We can choose
to use whatever words are culturally
feasible to ask for visibility and
controllability, as long as we clearly
express that we need them. Moreover, if
we consider both possible meanings of
testability, we spark our imaginations to
create more diverse tests.

To get visibility and controllability, we
may need to recruit developers to our
cause, but there’s something in it for
them, too. The developers themselves
benefit because a more testable program
is almost always easier to debug. They may
appreciate that, when a program is more
testable, we testers need less time to
achieve the same amount of test coverage,
or we can achieve more coverage in the
same amount of time. Either way, we have
a better shot at discovering some problem
that threatens the value of the product.

Testability fosters collaboration. At
Quarterdeck, memory management and
multitasking were tricky to understand
and diagnose. To resolve problems and

test the product, the development,
support, and testing teams needed access
to information about the system,
DESQview, and QEMM, so the developers
wrote a program called Manifest and
included it in the package. They continued
to refine the product based on ideas from
support staff, testers, and customers.

Manifest added a lot of value by
making invisible things visible. It
allowed our support staff and testers to
be more productive by allowing them to
troubleshoot problems quickly. Manifest
had easily understandable maps of
memory that showed which program or

device was using which addresses, so
finding and resolving conflicts was a
breeze. Manifest collected all of the
relevant system information in simple
tables that were easy to navigate, clearly
presented, informative, and able to be
printed, mailed, or faxed. Some cus-
tomers and vendors came to use Mani-
fest as a general troubleshooting tool.
For other customers, the DESQview and
QEMM packages were more valuable
than their competitors, at least partly
because they were better tested and
more supportable. Did that make a
difference? Well, for some time, QEMM
was consistently the best-selling PC
software package in the world. Testabil-
ity and supportability count. {end}

Michael Bolton lives in Toronto and
teaches heuristics and exploratory testing
in Canada, the United States, and other
countries as part of James Bach’s Rapid
Software Testing course. He is program
chair for the Toronto Association of
System and Software Quality and is
a regular columnist for Better Software
magazine. You can contact Michael at
mb@developsense.com.

Don’t Stop Now!
Log on to StickyMinds.com and join
Michael Bolton and your peers in a

conversation about this topic. At the end of
the digital column, add your views or just

read what others have to say.

To get visibility and controllability,
we may need to recruit developers to our cause.

