
OWL Quality Plan

Final

This document incorporates all previous Elvis quality assurance documents. It is an analysis of
the tasks necessary to assure quality for Elvis. It has been reviewed by Tech. Support, and
reflects the concerns of our customers.

This document includes the following sections:

Resource loading and open issues are not included, due to time constraints, and the need for
broader review by management.

Risk and Task Correlation

This table relates risk areas to specific quality assurance tasks. Any tasks listed on the right which are not completed
will increase the likelihood of customer dissatisfaction in the associated risk area on the left.

Source Code Usability • Review code for comments, style, formatting, and
comprehensibility.

• Review makefiles for simplicity, documentation, and
consistency.

Performance • Benchmark performance of low level encapsulation and high-
order functionality versus

• OWL 1.0x
• MFC
• Native Windows apps

• Actively solicit Beta tester feedback, design questionnaire,
tabulate/analyze results.

Internationalization • Verify international enabling of the following:
• Stored strings (window titles, diagnostics, etc.)
• Menus items and accelerators
• Cutting and pasting text (clipboard support)
• Printing
• Localized versions of common dialogs
• Status line code
• Input validation (proper uppercasing, etc.)
• filenames/streaming

Design Quality • Inspect code for appropriate use of C++ idioms.
• Participate in discussions to promote:

• Design simplicity
• Backward compatibility
• Appropriate feature set
• Flexibility for future technologies

Documentation Quality
Reference Guide

• Confirm API coverage with latest available header files.
• Check completeness of information for each API, member

function, and data item.
• Review material for overall usability/organization.

Programmer's Guide • Check for missing pieces:
• Versus MFC –
• Versus Petzold (native Windows)
• Versus our provided examples
• Revealed by beta survey feedback
• RTL/Classlib functionality used by Elvis
• C SDK methods compared with Elvis methods

• Review example code versus:
• Code style/readability/comprehensibility
• Compile-time errors/warnings
• Run-time bugs

• Review material for overall usability/organization.

Tutorial • Actively solicit feedback from neophyte Elvis users.
• Review example code versus:

• Code style/readability/comprehensibility.
• Compile-time errors/warnings.
• Run-time bugs.

Application size and efficiency • Benchmark Elvis size (DGROUP, .EXE) and performance vs.:
• Elvis 1.0x
• MFC
• Native Windows apps

• Check diagnostics
• Measure effect of varying levels of diagnostics
• Determine optimum/shipping versions of final vs. 'debug'

libraries, re: size/efficiency
• Actively solicit Beta feedback from

• Power Users (substantial/industrial strength apps.)
• Users of C++ that don't tend to write "optimal" code

(e.g., reviewers)
Debugger support • Review comprehensiveness and appropriateness of diagnostics

on a class by class basis
• Verify debugger support for

• Special Elvis needs: entry point/Winmain issues, Elvis
diagnostics, etc.

• Any debugging problems highlighted by Elvis: heavily
templatized code, exceptions, RTTI, linker capacity,
etc.

• Lobby for debugger features needed to enhance Elvis
debugging, e.g., memory mgmt. diagnostics, heap walking
capability, etc.

Portability across platforms,
APIs, and compilers

• Review Elvis source to assure appropriate use of APIs::
• #ifdef or remove Win16-specific calls
• #ifdef full Win32-specific calls
• #ifdef Win16 calls which have better Win32/s equivalents
• Execute test suites to verify that examples and other suites

produce the same output for both static and dynamic libs.
• Investigate the following C++ Compilers for Elvis

compatibility:
• Symantec
• MetaWare
• Microsoft
• CFront

• Execute test suites to verify that examples and other suites
produce appropriate output for the following (using debug
kernel):

• Win 3.1
• Win32s on Win 3.1
• Win32/s on Windows NT
• Win 3.1 on Windows NT
• Win 3.1 on OS/2
• Investigate Elvis compatibility using Mirrors on OS/2.

High-order functionality

System level
• Review specifications to assure that the following functionality

is supported
• OLE
• VBX
• GDI
• BWCC
• CTRL3D

• Track support issues for 3rd party:
• Frameworks
• Class libraries (Rogue Wave, etc.)
• Custom control (widget) collections

• Track interoperability issues for Borland products:
• Class libraries (Classlib, RTL iostreams, etc.)
• Engines (Pdox, BOLE2, etc.)
• Internal and external tools (WMonkey, WinSight,

Tarzan, Lucy, CBT, etc.)

Feature level • Verify that examples exist that use features of the 32bit
platforms and that include the following functionality:

• Event response tables to replace DDVTs
• Windows' resources from multiple DLLs;

TLibManager
• Document View model
• OLE DocFile support
• Common dialogs
• Clipboard support
• Floating palette
• Window decorations/gadgets (tool bars/status bars)
• Input validation support
• Printer support
• Use of C++ exceptions
• Menus (including OLE 2.0 support)
• GDI (fonts, brushes, pens, palettes, bitmaps, regions,

icons, cursors, DIBs, complete device context encaps.)
• Virtual listboxes (1,000,000,000 items)
• Edit control without limits
• Outliner/Tree structure listbox
• Edit control that will take multiple fonts
• Print Preview
• Edit control like QPW's
• Gauges, sliders, spin buttons, split panes
• Example(s) showing use of ODAxxxxx

(OwnerDrawAccess APIs)
• Workshop aware custom controls (there's already a

hack on CIS)
• OWL custom control(s) that are usable by 'C SDK'

style applications

Low-level API encapsulation • Review message response macros for coverage.

• Verify that all appropriate APIs (i.e., OS features) are
encapsulated.

• Compare item-by-item to MFC and other competitors
• Verify that API functionality is fully accessible and fully

usable.
• Check internal data structures for completeness.
• Verify consistency of Elvis abstractions (i.e., compared to the

native API parameter order, data types, etc.).
• Actively solicit feedback on ease-of-use/friendliness of enabling

layer Elvis API.
Backward compatibility and
upgradeability

• Assure that the BC4 toolset will work with OWL 1.0x
• Assure that OWL 1 apps are upgradeable to Elvis vis-a-vis:

• Documentation (usability testing, beta banging, careful
inhouse review)

• Automated conversion tool works intuitively
• Usability and documentation of design changes
• A comparison of 'major' techniques used in OWL 1.0x

with their current method in Elvis (Are they
unnecessarily different? Are they so much better that
they're worth the pain to switch? Are the above
questions/answers/design decisions fully doc'ed?)

Reliability • Measure code coverage of examples to determine what should
be stressed by new tests.

• Create or collect special test code, including at least one large-
scale omnibus application.

• Create and maintain smoke tests runnable by Integration.
• Build OWL library, after each delivery that has changes in

source or include files, for:*
• 16bit small static
• 16bit medium static
• 16bit large static
• 16bit large DLL
• 32bit flat static
• 32bit flat DLL
• All of the above in diagnostic/debugging mode.

• Build selected models with -Vf, -O2, -xd, -3, -dc and -po:‡
• 16bit large/medium static (switch every other time

between medium and large)
• 16bit large DLL
• 32bit flat fully optimized for speed and/or size (if not

already delivered that way)
• Verify that user built libs are identical to 'delivered' libs (except

paths and time stamps).
• Build all examples in all models listed above and run automated

regressions
• Verify that OWLCVT converts its test suite correctly.

†
 These first 12 will all be delivered to customers, on CD-ROM, the first 6, at least, on diskette.

* The following configurations may also be delivered on CD-ROM, if sufficient testing can be done.

Component Breakdown

This is a breakdown of OWL components to a reasonable granularity:

1. TEventHandler
2. TStreamable
3. TModule

3.1. TApplication
3.2. TLibManager
3.3. TResId
3.4. TLibId

4. TDocManager
5. TDocTemplate
6. TDocument

6.1. TFileDocument
6.2. TDocFileDocument

7. TView (TEditSearch and TListBox parentage)
8. TWindow

8.1. TDialog
8.1.1. TInputDialog
8.1.2. TPrinterDialog
8.1.3. TCommonDialog

8.2. TControl
8.2.1. TSScrollBarData
8.2.2. TScrollBar
8.2.3. TGauge
8.2.4. TGroupBox
8.2.5. TStatic
8.2.6. TButton
8.2.7. TListBox

8.3. TMDIClient
8.4. TFrameWindow

8.4.1. TMDIChild
8.4.2. TMDIFrame
8.4.3. TDecoratedFrame
8.4.4. TDecoratedMDIFrame

8.5. TLayoutWindow
8.6. TClipboardViewer
8.7. TKeyboardModeTracker
8.8. TFloatingPalette
8.9. TGadgetWindow

9. TScrollerBase
9.1. TScroller

10. TValidator
11. TPrinter
12. TPrintout
13. TGadget
14. TException
15. TMenu
16. TClipboard

17. TGdiBase
17.1. TGDIObject

17.1.1. TRegion
17.1.2. TBitmap
17.1.3. TFont
17.1.4. TPalette
17.1.5. TBrush
17.1.6. TPen

17.2. TIcon
17.3. TCursor
17.4. TDib
17.5. TDC

17.5.1. TWindowDC
17.5.2. TPaintDC
17.5.3. TCreatedDC
17.5.4. TMetafileDC

18. TPoint
19. TRect
20. TMetaFilePict
21. TDropInfo
22. TResponseTableEntry
23. TClipboardFormatIterator
24. TLayoutMetrics
25. Diagnostics support
26. Streaming/object persistence support
27. Error handling & exceptions
28. BOLE2 client/container support

28.1. Elvis support classes
28.2. BOLE2.DLL component
28.3. ObjectPort interface class

29. VBX support classes
30. OWLCVT porting tool

30.1. DDVTs to response table entries conversion
30.2. Class name and other text substitutions

31. Makefiles
31.1. Library source
31.2. Examples

32. Examples
32.1. Large scale (large/complex/high-order feature set)
32.2. Miscellaneous (small size/low-level feature set)
32.3. Non-shipping (but may move into above categories)

33. Documentation

33.1. Programmer's Guide
33.2. Reference Guide
33.3. Tutorial
33.4. Online Doc Files
33.5. Online Help

