
Forgot username?
Forgot password?
Forgot both?
New user?

Authorised user will not be able to log in

User may not have access to permiƩed resources
User may have access to forbidden resources

Brute force approach
IdenƟfiable vulnerability

Hacker will be able to log in

Previously authorised user will be able to log in
Unauthorised user will be able to log in

Hacker will be able to get access to the system while evading the login process, or some aspect of it
System is vulnerable to some form of aƩack (other than unauthorized login) by exploiƟng
vulnerabiliƟes in the login interface
Username/password will be intercepted
Some version of the soŌware will be out of date and unpatched or otherwise vulnerable

SQL injecƟon
XSS
CSRF

Login fields will be vulnerable to known security problems

Error messages will reveal useful informaƟon to hackers
User will be fooled into revealing credenƟals
Username/password/personal informaƟon will be leaked via vulnerability
Logout or unsuccessful login will leave system in an unstable or insecure state

simultaneous logins
dropped connecƟons that are not cleaned up

account registraƟonsgoing beyond limits of account management mechanisms
It may be possible to swamp the system with

User may not be able to access other systems or organizaƟons
Single sign-on issues
Back doors of which we may be unaware
Record of user access will not be retained

Especially important WRT to tracking hack aƩempts
Failed aƩempts to login will not be retained
Site looks sufficiently amateurish that user won't risk a login aƩempt (original Verified by Visa was like this)
Rob Sabourin's thread on mulƟple simultaneous logins, logged-in sessions; changing rights. (Where was that?)

Risks

Login is a process that happens on at least two machines, not just one.
To what degree are we monitoring the server?

Could login data be intercepted?
Are username and password encrypted?

What happens on intermediate machines?

Email only?
User ID only?
Both accepted?
Passworded?
Two-factor authenƟcaƟon?
EncrypƟon?

How many factors?

Single sign-on?
Will this be authenƟcaƟng with another system (like those TwiƩer add-ins)?OAUTH?

What is the test scope here?

my mission?
Am I the only tester on the project? The only tester
focused on this feature? Am I qualified?my context?

What happens before, during, and aŌer
the process on the client?
What happens before, during and aŌer the process on the server?

Is it subject to some kind of standard?
Where can I learn about the protocol?

What's the protocol?

What encrypƟon is in use?
You're not really using
GET, are you?

How do the client and
server communicate?

What happens on
intermediate systems?

Does the system preserve separate states for each one?
Does the user have access to resources across two sessions?

Are simultaneous logins
permiƩed?

Are cookies being used?
Where are they stored?
What do they contain?
Are their contents private? Should they be?

Cookies

ConnecƟon to "external" systems

logging in?

See "Product Elements"
of the HTSM

Is the user able to access everything that he should?
Is the user prevented from accessing the things that he shouldn't?

Are there other systems accessible via single sign-on (SSO?)
this product?

Bearer Token Usage
See standards
documents, RFCs, etc.related technologies?

XSS, CSRF?
SQL InjecƟon?
HTTP header injecƟon?
Email injecƟon?

Review security literature for
login-related problems

significant risks?

What do I know about?

When a message box is displayed?
What informaƟon is kept in the record?Has the login been recorded?

Other tests or checks?

How do we determine when the user is logged in and the
system is ready for use?

User correctly
authenƟcated?
User appropriately
authorized?

Is anything being
updated or pushed at
login Ɵme?
Okay, not this Ɵme. Ever?

Login scripts finished?

Login recorded in the
access logs?

What state should the system be in?

Is that happening?
Where does the server store the logs?

Are they well-structured,
easily
machine-readable?What do the logs look like?

Is the log secure?
Does the log contain sensiƟve informaƟon?
What happens under lots of load?

Does the server log the access?

What triggers them?
What form do they take?
What might not get cleaned up if a user can get
here but can't get past here?

Are there extra security
quesƟons?

When does a "logging in" test finish?

What happens in the GUI or browser, above that interface?
Is there a testable interface available?

Can that tesƟng be trusted?
Has anyone else tested this?
Are there limits on the number of logged-in users?
Are there limits on invalid login aƩempts?
How is the state of a logged-in user idenƟfied and maintained?
How about the state of an almost-logged-in user?
Character-based or field-based validaƟon?

Are validaƟon rouƟnes consistent for all of these and for the login process?
Where can login informaƟon be added, modified, and deleted?

Issues

Is there a flow model or diagram anywhere?
AuthenƟcaƟon database Structure

User ID
Password

Other credenƟal
informaƟon?

Obtain credenƟals

Send credenƟals to server
Assign access token to process or thread Compare credenƟals to authenƟcaƟon database

FuncƟon

About the user
About indvidual login acƟvity?

In aggregate
What informaƟon is gathered and tracked?

Rights
Token ID

Login session ID
User ID

Group idenƟfiers
RestricƟng group idenƟfiers

Privileges
Default owner, primary group, access control list for objects created by the subject associated with the token

Access tokens

Data

Command line?
Browser?

Other GUI?
e.g. OAUTH Through a third party?

Interfaces

OperaƟng systems
User database Plaƞorm

OperaƟons
Time

Product Elements

What is the set of acceptable characters?
What characters are acceptable, but must be escaped?

If we're tesƟng for these, test for one at a
Ɵme, not for blanket rejecƟon What characters are completely unacceptable?

is there filtering for that?
automaƟcally up- or down-cased?

If the username is an email address

Minimum and maximum lengths

Username field

Can it be revealed at the user's opƟon?
What is the acceptable set of characters?

Which characters are
unacceptable?

Case sensiƟvity?
Minimum and maximum lengths

Password field

Image/text
Audio

Is it on a separate server?
Captcha

Huge input data
Zero input data

Minimum length
Maximum length

Character assortments

CombinaƟons of valid and invalid
usernames/passwords/CAPTCHAs/security quesƟons

Submit buƩon
Is there a testable (scriptable) interface here?

Checkable aspects

Does the system properly block lapsed accounts?
Does the system enƟtle the user to more than it should?

Are there approprate lockout warnings?
Login aƩempt when locked out What is the lockout strategy, if any?

Login aŌer a Ɵmed-out session
Login aŌer a rejected login

TesƟng required

Test ideas

36Quality Criteria

This is an example of a set of test strategy ideas. It's a raw set of rough notes from a one-hour brainstorm I did in
2018 on how I might think about testing a login process. It's intended as somewhat disgruntled reply to those
examples of a script "testing" a login page by checking for the 'you are now logged in' message. There are lots of
things that can go wrong with the login process, and around it.

A couple of things to mention. First, these are rough notes; very rough. I have barely cleaned them up; just enough to
make them semi-readable. To be useful, they would need refinement, or to be tossed out and replaced with something
clearer and cleaner. On the other hand, it's a start.

The second thing to mention about these notes is that they're incomplete! They are by no means done. You'll notice
tons of empty nodes and dangling ideas on the map. There could be lots more things to question or to cover in some
context or another.

Third, I'm not a expert in aspects of testing (particularly security and performance) that would require deep expertise
here. I'm not doing this stuff every day. If I were, you can bet that I would immerse myself in those aspects of testing
and risk investigation. I'd hang out with performance testers and security testers and programmers, and I'd collect
stories about risks and problems from the Net.

Fourth, to answer the inevitable question, No, we wouldn't consider all of these things on every product, and certainly
not on every build. But we might choose to pull out some of these ideas and use them to guide or influence our testing
from time to time.

The key in all this is to recognize two contexts for testing. In some cases, we do want to test quickly, in a shallow but
useful way, when that helps us to maintain a good pace of development and not slow down.

In other circumstances, we may need to test deeply to look for subtle, hidden, rare, intermittent, emergent bugs.
Deep testing, however, is time-consuming and disruptive to programming work, so we don't even try to do it all the
time, or on every build. But if there's money or value or health or safety or reputation on the line, we'll want to do deep
testing to find the important problems that matter to our customers and to the business.

Michael Bolton

Login Example

Login Example.mmap - 2022-05-26 - Mindjet

