
Test Framing 
Michael Bolton Page 1 10/25/2010 

Oracles 

An oracle is a heuristic principle or mechanism by which someone recognizes a problem.  

If we perceive a problem, it’s because an oracle is telling us that there’s a problem.  Conversely, 
if we don’t see a problem, it’s because no oracle is telling us that there is a problem.  That 
doesn’t mean that there is no problem, or that there’s no oracle for a problem that’s there. It 
simply means that, for whatever reason, we’re not applying a principle or mechanism that would 
identify a problem.  We may not be aware of the oracle, or the oracles that we have may be 
misleading us, or failing to lead us far enough. 

Oracles are by their nature heuristic.  That is, oracles are fallible and context-dependent.  Oracles 
do not tell us conclusively that there is a problem; rather, they suggest that there may be a 
problem.  As Gause and Weinberg define it1, a problem is “a difference between things as 
perceived and things as desired”.  Perception and desire are both human and subjective, relative 
to some situation at some time.  Consequently, there can be no absolute oracle.  Most testers are 
familiar with applying an oracle which seems to indicate a problem, whereupon a program 
manager replies, “That’s not a bug; that’s a feature.”  The tester and the program manager here 
are applying different oracles.  Neither is wrong; each is using a different principle or 
mechanism. 

Consistency is an important theme in oracles.  Unless there is a compelling reason to desire 
otherwise, we generally tend to want a product to be consistent with 

 History: That is, we expect the present version of the system to be consistent with past 
versions of it.  Naturally, if a product is inconsistent with its history because a bug has been 
fixed, we likely appreciate the inconsistency.  Yet if our programmers have provided a 
workaround for the old problem, and the fix requires us to change our work habits, we may 
resent the fix!  This underscores the point that all oracles are heuristic.  Oracles may give 
inconsistent indications, and they contradict each other.   Oracles should be applied 
thoughtfully, rather than followed. 

 Image: We expect the system to be consistent with an image that the organization wants to 
project, with its brand, or with its reputation.  This can work both ways; for example, a game 
producer might specialize in strategy games such that the strategy aspect is paramount and 
graphic design is relatively unimportant.  For such a company, problems with graphics 
receive less attention than problems with the strategic aspect of the game. 

 Comparable Products: We expect the system to be consistent with systems that are in some 
way comparable.  That might include other products in the same product line, or from the 
same company.  The consistency-with-past-versions (History) heuristic is arguably a special 
case of this more general heuristic.  Competitive products, services, or systems may be 
comparable in dimensions that could help to discover a problem.  Products that are not in the 
same category but which process the same data (as a word processor might use the contents 
of a database for a mail merge) are comparable for the purposes of this heuristic.  A paper 
form is comparable with a computerized input form designed to replace it. Indeed, any 

                                                 
1 Donald Gause and Gerald M. Weinberg, Are Your Lights On?  Dorset House Publishing Company, Inc. (March 1, 
1990). 



Test Framing 
Michael Bolton Page 2 10/25/2010 

product with any feature may provide some kind of basis for comparison, whereby someone 
might recognize a problem or a suggestion for improvement. 

 Claims: We expect the system to be consistent with what important people say about it.  
These claims may take the form of reference (documents or products that you can point to), 
inference (what you believe someone important might say about the system), or conference 
(what someone important does say).  The claim may be incomplete or in error, in which case 
testing may reveal a problem with the claim, rather than a problem with the system.  
Important people might disagree in their claims about what the product should do.  The 
tester’s role is not to decide the matter, but to make people aware of the disagreement. 

 Users’ Expectations: We expect the system to be consistent with some idea about what its 
users might want.  Consider “users” broadly here.  A system that will be used in many 
different ways will have diverse users whose expectations and desires may conflict.  Often 
the direct user of a product is acting as a proxy for the person who receives the bulk of the 
benefit of the product or service, as a travel agent is operating a reservation system largely on 
behalf of her client.   

 Product: We expect each element of the system to be consistent with comparable elements 
in the same system.  A product might afford several means of accessing or observing a 
particular variable; consider the different ways of setting the margins—via a visible ruler or 
via a dialog box—in a word processing program, or differences between screen and print 
output.  User interface elements should be broadly consistent with one another, both for 
consistency of user interaction and consistency of image. 

 Purpose: We expect the system to be consistent with the explicit and implicit ways in which 
people might use it.  If some aspect of the product is missing, such that it fails to fulfill the 
user’s needs or support the user’s task, we suspect a problem.  If the product over-delivers, 
presenting options or features that confuse, overwhelm, or slow down a user, we suspect a 
problem. 

 Standards and Statutes: We expect a system to be consistent with relevant standards or 
applicable laws.  Note that compliance with a standard may be voluntary; a development 
group may choice to violate a point in a standard or may reject the standard entirely.  Yet 
non-adherence to a standard should be conscious, rather than compulsive.  It may be the 
tester’s role to draw attention to non-conformance with relevant standards—or unnecessary 
conformance with irrelevant standards. 

There is one more heuristic that testers commonly apply.  Unlike the preceding ones, this one is 
an inconsistency heuristic: 

 Familiarity: We expect the system to be inconsistent with any patterns of familiar problems.  
Note that any pattern of familiar problems must eventually reduce to one of the eight 
consistency heuristics. 

We can carry this list of consistency heuristics in our heads more easily by applying a 
mnemonic, based on the first letter of each heuristic guideword:  HICCUPPS (F).   

These consistency heuristics are subject to Joel Spolsky’s Law of Leaky Abstractions (“All non-
trivial abstractions are to some extent leaky.”)  This means that there may be overlap between the 
heuristics.  That’s fine; the object is to prevent an important problem, or class of problems, from 
being overlooked by defining our categories too narrowly. 



Test Framing 
Michael Bolton Page 3 10/25/2010 

Since oracles are fallible and context-dependent, testers cannot know the deep truth about any 
observation or test result.  No single oracle can tell you whether a program (or a feature) is 
working correctly at all times and in all circumstances, so it’s important to use a variety of 
oracles, and to be open to applying new ones at any moment. Any program that looks like it’s 
working may in fact be failing in some way that happens to fool all of your oracles.  To defend 
against that, you must proceed with humility and critical thinking2. 

Because oracles are fallible, a tester reports whatever seems plausibly to be a problem.  How 
does one decide on plausibility?  Testers apply abductive inference, cycles of reasoning to the 
best explanation.  We collect data and observations, we hypothesize explanations to account for 
the data, and we evaluate the hypotheses.  Then we make a decision:  choose the hypothesis that 
best accounts for the data, and stop; or collect more data—or more hypotheses.  This too is a 
heuristic process, and “heuristic devices don’t tell you when to stop”3. 

Oracles can be used prospectively or generatively; in the moment that they’re applied; or 
retrospectively.  We usually have a large number of oracles at our disposal before we start 
testing. Yet we often do not have oracles that establish a definite correct or incorrect result in 
advance. 

 You may use an oracle to help design a test. (“If the data doesn’t get transmitted to the server 
after I press update, that would be inconsistent with an implicit purpose and an explicit claim, 
so I’ll look for a problem like that.”)  Cycle through the list of oracle heuristics while you’re 
engaged in test design. 

 You may suddenly become conscious of an oracle (“Hey… that account balance is negative! 
I didn’t expect that to happen!  That’s inconsistent with what I would have expected, had I 
anticipated that in advance.”) 

 You may apply an oracle retrospectively.  (“Since that particular standard came to my 
attention, I realize now that what I saw when I was testing two weeks ago was non-standard 
behaviour.  I’m going to investigate that now that I have a reason to suspect it was a bug.”) 

At any time subsequent to the test, you may cite an oracle heuristic to explain why you believe 
something to be a problem.  A problem (or non-problem) may be more easily recognized with 
the application of multiple oracles that agree with each other.  Oracles may contradict one 
another.  A product owner’s decision on what to do about a problem report may be influenced by 
choices about which oracles to apply.  Therefore, since our role as testers is to provide credible 
information, we may also choose to use different oracles to temper our test framing or our bug 
advocacy4. 

For more on oracles, see Cem Kaner, “Introduction: The strategy problem and the oracle 
problem”, Black Box Software Testing, Center for Testing Education and Research, Florida 
Institute of Technology.  http://www.testingeducation.org/BBST/BBSTIntro1.html 

                                                 
2 For an excellent introduction, see David Levy, Tools of Critical Thinking:  Metathoughts for Psychology (Second 
Edition). Waveland Press, 2009. 
3 Gerald M. Weinberg, An Introduction to General Systems Thinking, Silver Anniversary Edition. Dorset House, 
2001. 
4 Cem Kaner and James Bach, “# Bug advocacy: How to win friends, influence programmers, and stomp bugs”, 
Black Box Software Testing.  Center for Testing Education and Research, Florida Institute of Technology.  
http://www.testingeducation.org/BBST/BBSTbugAdvocacy.htm 


