
Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

1

Michael Bolton
DevelopSense

http://www.developsense.com

Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

2

Why Test?

When we test, we
− try the product
− to learn
− sufficiently
− everything that matters
− about how the product can work
− and how it might fail.

Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

3

Test coverage is…

Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

4

Test Coverage Isn’t Code Coverage

Code coverage is only one way of modeling test coverage
− and a fairly weak way, at that

It might even be necessary, but it’s definitely not sufficient
− 100% code coverage might still miss all kinds of

performance, reliability, or usability problems
− code coverage doesn’t cover missing features or functions

Code coverage tools usually only cover our code
− they don’t cover calls to operating system and third-party

code
We don’t, and often can’t, know how variations (like varying
the data or the platform) might cause us to take new branches in
other people’s code

Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

5

Modeling Test Coverage

To obtain better test coverage, we might
− consider risks, and test for them

− a risk is “a problem that might affect some person, caused by a
vulnerability in the program, that is triggered by some threat”

− test based on more detailed or varied structural models
− what are the pieces of the product, and how do they interact with each

other?
− how does the product interact with other systems?

− test more of the functions and capabilities of the system
− what does the product do?

− vary the data that we use or produce in our tests
− what do the functions process?

Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

6

Modeling Test Coverage

To obtain better test coverage, we might
− vary the platforms that we use in our tests

− a platform is “anything upon which our product depends which is
outside the scope of our current development project”

− vary the operational modes of the system
− operational modes are “ways in which the system might be used”

− vary the time dimension
− the ways in which our product works over time
− the ways in which time affects our product or the other models
− spend more time testing

Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

7

Test Session Effectiveness

A “perfectly effective” testing session is one entirely
dedicated to test design, test execution, and learning
− a “perfect” session is the exception, not the rule

Test design and execution tend to contribute to test coverage
− varied tests tend to provide more coverage than repeated tests

Setup, bug investigation, and reporting take time away from
test design and execution
Suppose that testing a feature takes two minutes
− this is a highly arbitrary and artificial assumption—that is, it’s wrong,

but we use it to model an issue and make a point
Suppose also that it takes ten minutes to investigate and report
a bug
− another stupid, sweeping generalization in service of the point

In a 90-minute session, we can run 45 feature tests—as long
as we don’t find any bugs

Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

8

How Do We Spend Time?
(assuming all tests below are good tests)

C (bad)
B (okay)
A (good)

Module

80 minutes (8 bugs, 8 tests)
10 minutes (1 bug, 1 test)
0 minutes (no bugs found)

Bug reporting/investigation
(time spent on tests that find bugs)

1310 minutes (5 tests)
4180 minutes (40 tests)
4590 minutes (45 tests)

Number
of tests

Test design and execution
(time spent on tests that find no bugs)

Investigating and reporting bugs means….

or…

…or both.

• In the first instance, our coverage is great—but if we’re being assessed on the number of bugs
we’re finding, we look bad.
• In the second instance, coverage looks good, and we found a bug, too.
• In the third instance, we look good because we’re finding and reporting lots of bugs—but our
coverage is suffering severely. A system that rewards us or increases confidence based on the
number of bugs we find might mislead us into believing that our product is well tested.

In the first instance, our coverage looks great—but if we’re being assessed on the number of bugs
we’re finding, it looks bad. In fact, if we haven’t found any bugs, maybe it is bad. The numbers on
their own don’t tell that story. In the third instance, we look good because we’re finding and
reporting lots of bugs—but our coverage is suffering severely. A system that rewards us or increases
confidence based on the number of bugs we find might mislead us into believing that our product is
well tested. In the second instance, coverage looks good, and we found a bug, too. But maybe our
coverage isn’t so good; maybe we’ve exercised a lot of very similar test ideas.

This is a powerful argument for testability. Testability includes: ♦ scriptable interfaces to the
product, so that we can drive it more easily with automation; ♦ logging of activities within the
program; ♦ real-time monitoring of the internals of the application via another window, a debug port,
or output over the network; ♦ simpler setup of the application; ♦ the ability to change settings or
configuration of the application on the fly; ♦ clearer error/exception messages, including unique
identifiers for specific points in the code, or WHICH file was not found, thank you; ♦ availability of
modules separately for earlier integration-level testing; ♦ information about how the system is
intended to work (ideally in the form of conversation or "live oracles" when that's the most efficient
mode of knowledge transfer); ♦ information about what has already been tested (so we don't repeat
some else's efforts); ♦ access to source code for those of us who can read and interpret it; ♦ improved
readability of the code (thanks to pairing and refactoring); ♦ overall simplicity and modularity of the
application; ♦ access to existing ad hoc (in the sense of "purpose-built") test tools, and help in
creating them where needed; ♦ proximity of testers to developers and other members of the project
community; ♦ and finally, an application that’s in good shape to start with, thanks to diligent testing
by programmers, based on unit tests or (perhaps better yet) a test-first development approach such as
test- or behaviour-driven development. You may have some of these things already; few projects
implement all of them. Pick one that you’re missing, and start there.

Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

9

What Happens The Next Day?
(assume 6 minutes per bug fix verification)

5
38
45

New tests
today

18
79
90

Total over
two days

40 min (4 new bugs)
10 min (1 new bug)
0

Bug reporting and
investigation today

48 min
6 min
0 min

Fix
verifications

2 min (1 test)
74 min (37 tests)
45

Test design and
execution today

Finding bugs today means….

or…

…or both.

…which means….

•…and note the optimistic assumption that all of our fixed verifications worked, and that we found
no new bugs while running them. Has this ever happened for you?

Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

10

With a more buggy product

More time is spent on bug investigation and
reporting
More time is spent on fix verification
Less time is available for coverage

Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

11

With a less buggy product…

(that is, one that has had some level of testing already)

We’ve got some bugs out of the way already
Those bugs won’t require investigation and reporting
Those bugs won’t block our ability to test more deeply

Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

12

Test Early and Often!

Recurrent themes in agile development (note the small A)
− test-first development
− automated unit tests
− testability hooks in the code
− automated builds and continuous integration

The ideas are
− to increase developers’ confidence in and commitment to what they’re

providing (“at least it does this”)
− to allow rapid feedback when it doesn’t do this
− to permit robust refactoring
− to increase test coverage and/or reduce testing time

Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

13

Testing vs. Investigation

Note that I just gave you a compelling-looking table,
using simple measures, but notice that we still don’t
really know anything about…
− the quality and relevance of the tests
− the quality and relevance of the bug reports
− the skill of the testers in finding and reporting bugs
− the complexity of the respective modules
− luck

…but if we ask better questions, instead of
letting data make our decisions,

we’re more likely to learn important things.

Rapid Software Testing Copyright © 2007, DevelopSense
Includes Materials Copyright © 1996-2007, Satisfice, Inc.

14

We Testers Humbly Request…

Provide testability
− log files
− scriptable interfaces
− real-time monitoring capabilities
− configurability
− access to “live oracles” and other forms of information

− to avoid wasting time investigating a “bug” that isn’t a problem

Test at the unit level
− use TDD, test-first, automated unit tests, reviews and

inspections, step through code in the debugger—whatever
increases your own confidence that the code does what
you think it does

