
1

An Exploratory Tester’s
Notebook
Michael Bolton
DevelopSense

QUEST Chicago
April 2009

2

Who I Am

Michael Bolton
(not the singer, not the guy in Office Space)

DevelopSense, Toronto, Canada

mb@developsense.com
+1 (416) 992-8378

http://www.developsense.com

I help solve testing problems
that other people can’t solve.

Acknowledgements

• James Bach
• some material in this presentation is taken from

our Rapid Software Testing course
• Cem Kaner
• Jon Bach

• who introduced me to the Moleskine notebook
and who, with James, created and documented
session-based test management—and provides
exemplary session notes

3

This Presentation Is Under
Continuous Development

• For updated notes AND a more
formal paper on notebooks:
quest2009@developsense.com

The First Law of Documentation

“That should be documented.”

“That should be documented
if and when and how it serves our purposes.”

Who will read it? Will they understand it?
Is there a better way to communicate that information?

What does documentation cost you?

4

Documentation: Product or Tool?

ProductTool

Audience:

Self Team Customers Regulators

Purpose:
Recollection Organization Communication Demonstration

Paradigm:

Notebooks: A Personal View

• Over the last I’ve been keeping a set of
notebooks

• This is an experience report on how one
exploratory tester and consultant (me) has
used them

• This is a context-driven talk; this is not a
best-practices talk

5

My Introduction to the Moleskine

• I’ve kept documents (mostly for school or work) all my life
• scribblers
• legal pads
• ASCII text files
• Word documents

• In January 2004, I noticed Jon Bach’s Moleskine notebook
• In January 2005, James Bach suggested I get one. I did.
• It turns out there’s a something of a cult…

• http://www.moleskinerie.com/
• http://www.moleskinecity.com
• http://en.wikipedia.org/wiki/Moleskine

So What’s the Big Deal?

• Several form factors
• larger notebook
• smaller notebook (pocket size)
• reporter style
• memo pockets

• Three line styles
• plain
• ruled
• squared

• Page marker
• Elastic closure
• Back pocket
• Sewn binding, lies flat
• Geek-chic-mystique-boutique appeal

• Well-constructed
• Durable
• Somewhat expensive

6

Who Uses Notebooks?

Exploratory testers are all three, and more.
ALL testers are, at some point, explorers.
Maybe we should learn explorers’ tools.

Paradigmatic Examples

• Leonardo: inventor’s notebook
• Codex Arundel, Codex Leicester, Codex Foster, etc.
• contents: sketches, inventions, architecture, elements of

mechanics, painting ideas, human anatomy, grocery lists and even
people that owed him money (Wikipedia)

7

Paradigmatic Examples

• Gordon Gould: inventor’s notebook
• One of the people involved in the invention of the laser.
• Notes created after meeting with Charles Hard Townes, November

1957 include the acronym “LASER” and several aspects of its
design.

Paradigmatic Examples

• William Logan: explorer/geologist’s notebook
• Written in Stone—geological explorations of Canada
• http://www.collectionscanada.ca/logan/021014-1000-e.html

1846 Lake Superior

8

Paradigmatic Examples

• William Logan – Explorer’s notebook
• Written in Stone—geological explorations of Canada
• http://www.collectionscanada.ca/logan/021014-1000-e.html

Why Notebooks Now?

• In the age of the Palm (I have one) and the
smartphone (I have one) and the laptop (I
have one), why use notebooks?

• They’re portable
• They never crash
• They never forget to save
• Battery doesn’t wear out
• They’re free-form
• They’re available
• They’re personal

9

What I Use Notebooks For

• Brainstorming
• Sketches
• Catalogs of heuristics
• Mind maps
• Diagrams
• Action items and reminders
• “Fieldstones” and blog entries
• Conference or workshop sessions
• Test notes, and practice taking them

My Notebooks

• I thought I lost my
notebook once. Now…

10

A Busy Couple of Days, With Rant

An Exploratory Testing Session

11

An Exploratory Testing Session

An Exploratory Testing Session

12

An Exploratory Testing Session

Observation on Building Skill

13

Diagramming

• “The diagram is nothing;
the diagramming is
everything.”
• Jerry Weinberg

• [pointing at a box] What if the function in this box fails?
• Can this function ever be invoked at the wrong time?
• [pointing at any part of the diagram] What error checking do you

do here?
• [pointing at an arrow] What exactly does this arrow mean? What

would happen if it was broken?

James Bach on White-Box Risk-
Based Analysis, with Diagrams

Guideword Heuristics for Diagram Analysis

• Boxes
• Missing/Drop-out
• Extra/Interfering
• Incorrect
• Timing/Sequencing
• Contents/Algorithms
• Conditional behavior
• Limitations
• Error Handling

• Lines
• Missing/Drop-out
• Extra/Forking
• Incorrect
• Timing/Sequencing
• Status Communication
• Data Structures

• Paths
• Simplest
• Popular
• Critical
• Complex
• Pathological
• Challenging
• Error Handling
• Periodic

Web Server
Database

Layer
App Server

Browser

Testability!

- James Bach, from our Rapid Software Testing course.

14

Incremental Catalogs

• As ideas occur to me, I
might reserve a single
page or two to
consolidate them.

An Ongoing Bug Catalog

15

Portable Presentations!

• Easier than booting the laptop!

E.T. Skills and Tactics

• Mike Kelly elaborated on
this list of exploratory
skills and tactics, which
was originally written by
James and Jon Bach.

• In writing down the list, I
reckoned that tooling
(distinct from resourcing)
and evaluating were (for
me) missing.

16

KEY IDEA

How Might We Organize,
Record, and Report Coverage?

• annotated diagrams (see earlier slides)
• coverage outlines and risk lists

• plentiful examples in the Rapid Software Testing notes
http://www.satisfice.com/rst-appendices.pdf

• requirement / risk vs. coverage matrices
• (see subsequent slides)

• bug taxonomies (external and in-house)
• example: appendix to Testing Computer Software
• example: “Bugs in your Shopping Cart”,

www.kaner.com/pdfs/BugsInYourShoppingCart.pdf
• summarized log files
• automated tools (e.g. profilers, coverage tools)

17

Quality Criteria Coverage Matrix

Product Element Coverage Matrix

18

E.T. Notetaking Online:
Session-Based Test Management

• Charter
• A clear, concise mission for a session of testing

• Time Box
• 90-minute (+/- 30), long enough for setup and

focused work; short enough to make sure things
don’t get off track

• Reviewable Result
• next slide!

• Debriefing
• conversation between tester and manager
• problems, bugs and issues can be discussed
• new risks can be identified
• coaching and mentoring can happen

Charter

• A clear mission for the session
• A charter may suggest what should be tested,

how it should be tested, and what problems to
look for.

• A charter is not meant to be a detailed plan.
• General charters may be necessary at first:

• “Analyze the Insert Picture function”
• Specific charters provide better focus, but take

more effort to design:
• “Test clip art insertion. Focus on stress and flow

techniques, and make sure to insert into a variety of
documents. We’re concerned about resource leaks
or anything else that might degrade performance
over time.”

19

Time Box

• Brief enough for accurate reporting.
• Brief enough to allow flexible scheduling.
• Brief enough to allow course correction.
• Long enough to get solid testing done.
• Long enough for efficient debriefings.
• Beware of overly precise timing.

Short: 60 minutes (+-15)
Normal: 90 minutes (+-15)

Long: 120 minutes (+-15)

Focused test effort of fixed duration

Reviewable Results

• Charter
• #AREAS

• Start Time
• Tester Name(s)
• Breakdown

• DURATION
• TEST DESIGN AND EXECUTION
• BUG INVESTIGATION AND

REPORTING
• SESSION SETUP
• CHARTER/OPPORTUNITY

• Data Files

• Test Notes
• Bugs

• BUG

• Issues
• ISSUE

CHARTER

Analyze MapMaker’s View menu functionality and
report on areas of potential risk.

#AREAS
OS | Windows 2000
Menu | View
Strategy | Function Testing
Strategy | Functional Analysis

START

5/30/00 03:20 pm

TESTER

Jonathan Bach

TASK BREAKDOWN

#DURATION
short

#TEST DESIGN AND EXECUTION
65

#BUG INVESTIGATION AND REPORTING
25

#SESSION SETUP
20

A test session sheet that can be scanned
by a Perl script for compilation elsewhere

20

Debriefing

• The manager or test lead reviews the session
sheet to assure that (s)he understands it and
that it follows the protocol.

• The tester answers any questions.
• Session metrics are checked.
• Charter may be adjusted.
• Session may be extended.
• New sessions may be chartered.
• Coaching and mentoring happens.

Assessment begins with observation

The Breakdown Metrics
Testing is like looking for worms

Test Design and Execution

Bug Investigation and Reporting

Session Setup

21

Reporting the TBS Breakdown
A guess is okay, but follow the protocol

• Test, Bug, and Setup are orthogonal categories.
• Estimate the percentage of charter work that fell

into each category.
• Nearest 5% or 10% is good enough.
• If activities are done simultaneously, report the

highest precedence activity.
• Precedence goes in order: T, B, then S.
• All we really want is to track interruptions to

testing.
• Don’t include Opportunity Testing in the estimate.

Test Session Effectiveness

• A “perfectly effective” testing session is one entirely dedicated to test
design, test execution, and learning
• a “perfect” session is the exception, not the rule

• Test design and execution tend to contribute to test coverage
• varied tests tend to provide more coverage than repeated tests

• Setup, bug investigation, and reporting take time away from test design
and execution

• Suppose that testing a feature takes two minutes
• this is a highly arbitrary and artificial assumption—that is, it’s wrong,

but we use it to model an issue and make a point
• Suppose also that it takes eight extra minutes to investigate and report

a bug
• another stupid, sweeping generalization in service of the point

• In a 90-minute session, we can run 45 feature tests—as long as we
don’t find any bugs

22

How Do We Spend Time?
(assuming all tests below are good tests)

C (bad)
B (okay)
A (good)

Module

80 minutes (8 bugs, 8 tests)
10 minutes (1 bug, 1 test)
0 minutes (no bugs found)

Bug reporting/investigation
(time spent on tests that find bugs)

1310 minutes (5 tests)
4180 minutes (40 tests)
4590 minutes (45 tests)

Number
of tests

Test design and execution
(time spent on tests that find no bugs)

Investigating and reporting bugs means….

or…

…or both.

• In the first instance, our coverage is great—but if we’re being assessed on the number of bugs
we’re finding, we look bad.
• In the second instance, coverage looks good, and we found a bug, too.
• In the third instance, we look good because we’re finding and reporting lots of bugs—but our
coverage is suffering severely. A system that rewards us or increases confidence based on the
number of bugs we find might mislead us into believing that our product is well tested.

What Happens The Next Day?
(assume 6 minutes per bug fix verification)

5
38
45

New tests
today

18
79
90

Total over
two days

40 min (4 new bugs)
10 min (1 new bug)
0

Bug reporting and
investigation today

48 min
6 min
0 min

Fix
verifications

2 min (1 test)
74 min (37 tests)
45

Test design and
execution today

Finding bugs today means….

or…

…or both.

…which means….

•…and note the optimistic assumption that all of our fixed verifications worked, and that we found
no new bugs while running them. Has this ever happened for you?

23

Testing vs. Investigation

• Note that I just gave you a compelling-looking
table, using simple measures, but notice that we
still don’t know anything about…
• the quality and relevance of the tests
• the quality and relevance of the bug reports
• the skill of the testers in finding and reporting bugs
• the complexity of the respective modules
• luck

…but if we ask better questions, instead of
letting data make our decisions,

we’re more likely to make progress.

Session-Based Test Management

For more information on SBTM, see
http://www.satisfice.com/sbtm

24

KEY IDEA

The Dashboard Concept

Project conference room
Large dedicated whiteboard

“Do Not Erase”

Project status meeting

25

Area
file/edit
view
insert
format
tools
slideshow
online help
clipart
converters
install
compatibility
general GUI

Effort
high
low
low
low
blocked
low
blocked
none
none
start 3/17
start 3/17
low

C.
1
1+
2
2+
1
2
0
1
1
0
0
3

Q.Comments
1345, 1363, 1401

automation broken
crashes: 1406, 1407
animation memory leak
new files not delivered
need help to test...
need help to test...

lab time is scheduled

Testing Dashboard Updated: Build:

2/21 38

Product Area

• 15-30 areas (keep it simple)
• Avoid sub-areas: they’re confusing.
• Areas should have roughly equal

value.
• Areas together should be inclusive

of everything reasonably testable.
• “Product areas” can include tasks or

risks- but put them at the end.
• Minimize overlap between areas.
• Areas must "make sense" to your

clients, or they’ll ignore the board.

Area
file/edit
view
insert
format
tools
slideshow
online help
clipart
converters
install
compatibility
general GUI

26

Test Effort

None
Start
Low
High
Pause
Blocked
Ship

Not testing; not planning to test.

Regression or spot testing only; maintaining coverage.

Focused testing effort; increasing coverage.

No testing yet, but expect to start soon.

Temporarily ceased testing, though area is testable.

Can’t effectively test, due to blocking problem.

Going through final tests and signoff procedure.

Test Effort

• Use red to denote significant problems or
stoppages, as in blocked, none, or pause.

• Color ship green once the final tests are
complete and everything else on that row is
green.

• Use neutral color (such as black or blue, but
pick only one) for others, as in start, low, or
high.

27

Test Coverage

0
1
1+
2
2+
3

We don’t have good information about this area.

More than sanity, but many functions not tested.

Common & Critical:

Sanity Check:

Some data, state, or error coverage beyond level 2.

Complex Cases:

all functions touched; common
& critical tests executed.

strong data, state, exceptional, error,
extreme, stress or long-sequence
testing.

major functions & simple data.

Test Coverage

• Color green if coverage level is acceptable for
ship, otherwise color black.

• Level 1 and 2 focus on functional requirements
and capabilities: can this product work at all?

• Level 2 may span 50%-90% code coverage.
• Level 2+ and 3 focus on information to judge

performance, reliability, compatibility, and other
“ilities”: will this product work under realistic
usage?

• Level 3 or 3+ implies “if there were a bad bug in
this area, we would probably know about it.”

28

Quality Assessment

“We know of no problems in this area that
threaten to stop ship or interrupt testing, nor do
we have any definite suspicions about any.”

“We know of problems that are possible
showstoppers, or we suspect that there are
important problems not yet discovered.”

“We know of problems in this area that
definitely stop ship or interrupt testing.”

Use the comment field to explain
anything colored red, or any non-green

quality indicator.

Comments

• Problem ID numbers.
• Reasons for pausing, or delayed start.
• Nature of blocking problems.
• Why area is unstaffed.

29

Using the Dashboard

• Updates: 2-5/week, or at each build, or prior to
each project meeting.

• Progress: Set expectation about the duration of
the “Testing Clock” and how new builds reset it.

• Justification: Be ready to justify the contents of
any cell in the dashboard. The authority of the
board depends upon meaningful, actionable
content.

• Going High Tech: Sure, you can put this on
the web, but will anyone actually look at it???

