
Two Futures of Software Testing Copyright © 2006 Michael Bolton

of Software Testing

Michael Bolton
DevelopSense

TestNet
May 2011

Two Futures
of Software Testing

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Who I Am

Michael Bolton
(not the singer, not the guy in Office Space)

DevelopSense, Toronto,
Canada

mb@developsense.com
+1 (416) 992-8378

http://www.developsense.com

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Acknowledgements

• James Bach
• some of the material comes from the Rapid Software

Testing Course, of which James is the senior author
and I am co-author

• Cem Kaner
• Bret Pettichord
• Jerry Weinberg
• Jonathan Kohl
• TestNet

Two Futures of Software Testing Copyright © 2006 Michael Bolton

of Software Testing

These are not the only two futures.
They’re offered for your consideration.

The choices are up to you.

These are not predictions.
These are proposals.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
The Tester’s Role is to Inhibit Change

• Nothing is more important than following our
plans and our processes strictly

• If our clients want change, we’ll accuse them of
being “against quality”.

our clients will understand, of course
if they want to change the requirements, we say they should have known that from the beginning
and if they don’t like that, we’ll call them names like “immature” or “unprofessional”

In the Dark Future, it is the role of the tester—excuse me, the Quality Assurance Analyst—to inhibit
change. Change brings a chance of invalidating things that we believe we know about the product and the
project, and thus change involves risk. So even though the customer needs, the market conditions, the
schedule, the budget, the product scope, the staff, and everything else about the project might change, we
should stay the course and stick to the plan. It doesn’t matter if we learn things through the course of
developing the product; we should have known those things beforehand. It’s not merely our job to inform;
we must also enforce.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Testing as an Assembly Line

In the Dark Future, ISO Standard 29119 will tell us what to test and how to test it. “Whatever type of
testing you do, it will affect you.” It doesn’t matter if the people who drafted the standard know your
business; they’re experts, and they know what’s good for you better than you do. “The standard uses a
four layer process model starting with two organizational layers covering test policy and organizational
test strategy. The next layer moves into project management, while the bottom layer defines the
fundamental test process used for all levels of testing, such as unit testing, system testing, acceptance
testing, and the test types (e.g. performance and usability testing). Parts 2 and 3, on process and
documentation respectively, are particularly closely linked as all outputs from the test processes potentially
correspond to documents defined in the document part. There is also a ‘new work item’ being suggested
that would see a fifth part initiated on test process improvement – imagine a testing industry without the
emergence of another new test improvement model every couple of years.” Doesn’t that sound swell? Not
only will they be telling you what to do, but also how to improve it–despite the acknowledged caveat,
“Probably the biggest complaint raised against IT standards is that they do not meet the needs of actual
practitioners – most of us have come across such ‘shelfware’.” Don’t worry about the standard being
unmanageable, either. The current draft of Part 2 of the standard is, as of this writing, a mere 100 pages.
Note also that there is a standard vocabulary associated with the standard. That standard vocabulary will be
in English. Translating it into other languages will only increase complexity and ambiguity. Let’s all just
test in English. If other cultures don’t like that… well, tough. There’s not much to learn from them
anyway.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Promoting Orthodoxy

• All testers must be certified with easy-to-pass
multiple choice exams
• testing doesn’t really require skilled labour anyway

• Everyone in “the testing industry” uses the
same language and tests to a standard

In the Dark Future, testers will be evaluated based on their ability to memorize testing terms from a
particular authority’s body of knowledge. Context or interpretation have no place in the Dark Future.
Exams should always be set up for the convenience of the certifiers, so multiple choice is definitely the way
to go here. If there are concerns that this approach is insufficient to evaluate skills, no worries: testing isn’t
an especially skilled trade anyway. Some testers are able to write code to automated the work, which is a
good idea because testing is mostly an uninteresting, repetitious, confirmatory task anyway.
We don’t want testers to be hobnobbing with the developers (that is, the programmers—but programmers
are the only developers in the Dark Future). Testers are too weak-willed to avoid the pernicious influence
of programmers, so mingling might compromise the testers’ objectivity. Testers might even be tempted not
to report bugs.
Repeatability is very important in the Dark Future. We want to run the same tests over and over, without
variation, because variation might lead to unpredictability. Discovering and investigating bugs could throw
our whole schedule off. So investigation is banned; variation suppressed
Testing is standardized across departments and throughout the “industry”. Standardize testing if you want
to find only the bugs that have agreed to follow the standards.
There shall be One True Way to Test. There shall be one universal language for testing, and since
American and British consultants promote it, it shall be English. For those who worry about Agile, Agile
approaches can still be made very orthodox
If we find it hard to apply standard practices, we’ll say that we apply them.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Testing ISN’T About Learning

• Testing is focused on
confirmation, verification,
and validation

• Testers check to make
sure that prescribed tests
pass.

• Exploration and
investigation are luxuries
at best, threats at worst

In the Dark Future, testing is a relentlessly routine, mechanical activity, even when it’s done by humans.
It’s not about learning, it’s about confirming things that we already know, answering questions for which
we already have the answer, repeating the same mindless tests over and over again. There’s no place in the
Dark Future for exploration, investigation, or discovery, or learning, and that means that there’s no place
for skill, creativity, or imagination. Nor is there room for asking questions about the customers and how
they might value our product. We just do what we’re told, and we learn nothing.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Testing is reduced to non-sapient checking

by a human who has been
instructed NOT to think

(and who is slow and erratic)

• “Sapient” means “requiring human wisdom”
• A non-sapient activity can be performed

by a machine
that can’t think

(but is quick and precise)

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Putting The Testers In Charge

Project management is not mature enough
to make proper decisions.

In the Dark Future, testers are quality gatekeepers. We decide when to start testing, and we only do so
when the product and the accompanying documentation adhere to our rigourous standards, and when we’ve
received complete, unambiguous, up-to-date requirements documents. We decide whether the product is of
sufficient quality to ship. Managers must obtain our signature and our permission to be sure that they’re
releasing a quality product. We can block releases if the product isn’t good enough for us. We decide when
to start testing, and we do so only. We’re not obliged to follow these standards ourselves, of course; that’s
not our role. In the Dark Future, our role is to tell other people what they’re doing wrong and how to do it
right. In the dark future, testers are the real project managers.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Not
The Dark Future:

Putting The Testers In Charge

Testers don’t have control over schedules, budgets,
product scope, staffing, contracts, and so on…

but we’re still responsible for quality.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Dark Future:
Measurement

• We measure…
• requirements scope by counting requirements
• test coverage by counting test cases
• product quality by counting bugs
• the value of testers by counting bug reports
• programmer output by counting lines of code
• complexity by counting code branches

• The relevance of the number
to the attribute doesn’t matter.

• So simple a child can do it!

Requirements, productivity, complexity, test coverage, product quality, and tester value are influenced by
dozens, hundreds of factors that we could observe. Yet most of these factors are not tangible or countable
in a meaningful way, and simplistic attempts to count instances of them are practically guaranteed to
mislead. In the Dark Future, we make these problems go away by ignoring them.
A bug is not a thing in the world. A bug is a construct; thought-stuff; a mental thing. It’s a relationship
between some person and some product, such that some other person might not view it as a bug. Even
when two people or more agree that some behaviour seems to be a bug, they may disagree on the
significance of the bug. Despite this, in the Dark Future, we’ll just count ’em. More bugs means higher
quality; fewer bugs means lower quality. That applies to testers too. We’ll ignore all the other activities
and dimensions of value that a tester might bring to a project, and count their bug reports to measure their
effectiveness.
In the Dark Future, we won’t measure by qualitative measures, direct observation, interaction between
testers and programmers, or conversation with actual users. We don’t trust stories; only statistics. Yet we
don’t worry about construct validity or other problems in measurement. We’ll simply apply the idea that
there should be one test case traceable to each requirement. No, wait! Two! One positive test case and one
negative test case.
Cem Kaner has said that a test case is a question that we want to ask about the product. As James Bach has
said many times, a test case is a container for a question. In the Dark Future, we’ll evaluate the quality of
work in an office by counting the briefcases that come in the door every morning. We won’t bother to look
inside them. If more briefcases come in, it’s obvious that the quality of the company’s work will improve.
We’ll certainly ignore problems associated with simple metrics by avoiding Software Engineering Metrics:
What Do They Measure and How Do We Know? by Cem Kaner and Pat Bond
(http://www.kaner.com/pdfs/metrics2004.pdf); the classic How To Lie With Statistics, by Darrell Huff;
Quality Software Management, Vol. 2: First Order Metrics by Gerald M. Weinberg; and especially
Measuring and Managing Performance in Organizations, by Robert D. Austin.
Einstein said that “not everything that counts can be counted; and not everything that can be counted
counts.” We’ll ignore him too.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The worst thing about
the dark future is…

In the Dark Future, testers implicitly run the project when it’s convenient for management to let them do it.
Even though testers are essentially powerless, testers are still held responsible for all quality lapses. Testers
have blame without responsibility, culpability without authority. Since they were the last people to have
their hands on the code, it is assumed that any undetected problems are their fault. Testers are required to
sign documents asserting that the product is acceptable for release, even though the release of the product is
a business decision, rather than a technical one.
In the Dark Future, all product failures are seen as testing failures. There’s no recognition that problems
are problems for the whole development team. Read the daily newspaper, and you’ll see over and over that
problems are pinned on poorly tested software. Not poorly programmed software, nor poorly managed
projects, not poorly conceived products, not poorly developed requirements. In the popular view, product
problems are testing problems; no more, no less. In this view, if software development were a sport, the
entire responsibility for the loss of a game would be laid on the goalie.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

This is our role.
We see things for what they are.

We make informed decisions about quality possible,
because we think critically about software

BUT
We let project owners make the business decisions.

The Bright Future:
Testers Light The Way

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Testers Embrace Change and Complexity

• The real world is messy and complex
• Change WILL happen

• in market conditions…
• contracts…
• requirements…
• specifications…
• designs…
• documents…
• products…
• systems…

• We help our clients understand
the implications of change
and complexity

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Adaptability over Repeatability

• Repeatability, for computers, is relatively easy, but testing is
not mere repetition. It’s an open search.

• Skilled testing therefore focuses on thinking and looking for
adaptability, value, and threats to value

• A skilled tester doesn’t ask, “Pass or fail?”
• A skilled tester asks

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Movement to Standardize Testing

• A standard approach to testing works brilliantly
…if you only want to find standard bugs.

• How has the “standardized tester” worked out
• for the testing community at large?
• for individual testers?
• for organizations who have fallen for the marketing?
• AND for a small group of certification salespeople?

• Ask yourself:
• 150,000 testers times (at least) $100 per exam…

where has that (at least) $15,000,000 gone?
• Who is most aggressively promoting ISO 29119?

Two Futures of Software Testing Copyright © 2006 Michael Bolton

My Alternative to Certification:
Being Prepared for Any Testing Mission

• I practice and teach testing
• whereby I gain experience by succeeding and failing

• I practice critical thinking
• whereby I try to avoid fooling myself and others

• I practice systems thinking
• whereby I learn to see the big and small pictures

• I practice programming
• whereby I obtain humility

• I practice describing my practices
• orally
• in writing (magazine articles, blogs, etc.)
• in presentations (like this one)

• I participate in a community that works this way.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

My Alternative to Certification
Bringing Ideas and Knowledge to the Job

• I read books and articles that are not about testing
• science and physics
• mathematics and statistics
• cognitive psychology and critical thinking
• computer programming and software design
• food and cooking
• general systems
• medicine
• economics
• social sciences
• history
• comedy

• I relate these disciplines to testing, and describe
the value of the relationships

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Software Development
Is Not Much Like Manufacturing

• In manufacturing, the goal is to make zillions of widgets all the same.
• Repetitive checking makes sense for manufacturing, but…
• In software, creating zillions of identical copies is not the big issue.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Software Development
Is More Like Design

• Each new software product is novel to some degree, which
means a new set of relationships and designs every time.

• New designs cannot be checked only; they must be tested.

If existing products sufficed, we wouldn’t bother create a new one.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Testing of Design Is Like Work in a Crime Lab

• There is too much evidence to test
anything like all of it

• There are many tools, procedures,
sources of evidence.

• Tools and procedures don’t define
an investigation or its goals.

• Tools are often expensive
• Investigators work under

conditions of uncertainty and
extreme time pressure

• Our clients (not we) make the
decisions on how to proceed
based on the available evidence

These ideas come largely from Cem Kaner, Software Testing as a Social Science
http://www.kaner.com/pdfs/KanerSocialScienceSTEP.pdf

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Testing Is Focused on Learning

execution

(a search for
value and risk)

Exploration

discovery

investigation

learningreporting

Testers help to defend the value of the product
by learning on behalf of our clients.

design

We’re not in the business of confirming beliefs. We’re in the business of demolishing unwarranted beliefs.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Testers Are Like Sensory Instruments
for the Project Community

Two Futures of Software Testing Copyright © 2006 Michael Bolton

So What Are We Testers?

The tester doesn’t have to reach conclusions or make recommendations
about how the product should work. Her task is to expose credible
concerns to the stakeholders.

- Cem Kaner, Approaches to Test Automation, 2009 (my emphases)

Software testing is the investigation of systems
composed of people, computer programs, and

related products and services.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

What Is Testing?

• Excellent testing is not merely a branch of computer science
• focus only on programs, and you leave out questions of value and other

relationships that include people

• To me, excellent testing is more like anthropology—
interdisciplinary, systems-focused, investigative, storytelling

Biology Archaeology Language Culture

Anthropology, the study of humankind, is intensely investigative and interdisciplinary.
Anthropologists know that different cultures exist to bind people together, and to solve specific, local
problems. As Wade Davis puts it so beautifully, what we might think of as primitive cultures are not failed
attempts to be modern. “When asked the fundamental question, ‘What does it mean to be human?’,
mankind responds in seven thousand different voices.”
True process maturity would recognize the need for different approaches to deal with different testing
missions.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Automation Has Many Purposes

• The tester’s mindset and skill set are at the centre of an
exploratory process; programming is only one skill

• Automation extends our capacity to generate data,
visualize, analyze, sort, search, observe, interpret…

• Automation doesn’t test; people test.
I can’t test,

but I can help
you act on
test ideas.

See http://www.developsense.com/2009/08/testing-vs-checking.html

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Client, Not The Tester, Is In Charge

When are we
going to be

done eating?

What the…?

When testing is an investigative service,
estimation is easy: we have exactly as much time

as the client is willing to give.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Windows Vista™ System Requirements

“Inadequate” Requirements Documents?
No problem!

If you complain that you need
requirements documents before you can test,

you’re not really testing; you’re checking.

If you discover that the requirements
documents have problems, your testing

has already revealed
interesting information…

…and testing can add a lot
of information to help

in solving those problems.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Observation Over Counting

• quantitative criteria
• data
• bug counts
• test cases completed
• pass/fail ratio
• release metrics
• one test per requirement
• what numbers tell us
• blame

– qualitative criteria
– information
– problem and issue stories
– multivariate coverage
– “Is there a problem here?”
– good enough quality
– risk focus
– what numbers leave out
– understanding

Instead of this… we consider this.

The object of measurement is not to provide answers,
but to suggest better questions.

A requirement is not a line or a paragraph in a document; those things are representations—literally re-
presentations—of the difference between what someone has and what someone desires. Counting a
requirement by counting a line in a requirements document ignores everything about the meaning and the
significance of the requirement, like counting tricycles and space shuttles as equivalent.
People say that bad metrics are “better than nothing”. That’s like saying that death by “friendly fire” is
better than not shooting.
In domains where decisions are political and emotional, decisions will always be made on the basis of
whose values matter, and how they feel about things. The object of measurement is not to provide answers,
but to suggest better questions.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

How Do We Measure?

• Third-order measurement
• highly instrumented, used to

discover natural laws
• “What will happen? What

always happens?”

• Second-order
measurement
• often instrumented, used to

refine first-order observation
• used to tune existing systems
• “What’s really going on here,

exactly? What’s happening?”

People often quote Lord Kelvin: “I often say that when you can measure what you are speaking
about, and express it in numbers, you know something about it; but when you cannot express it in
numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of
knowledge, but you have scarcely, in your thoughts, advanced to the stage of science, whatever
the matter may be.”[1] But, few note the sentence that precedes the passage: “In physical science
the first essential step in the direction of learning any subject is to find principles of numerical
reckoning and practicable methods for measuring some quality connected with it.” Note that he’s
not talking about quality in terms of value, but rather in terms of properties of things. (Oh, and by
the way, Lord Kelvin also asserted that heavier-than-air flight was impossible, and that there was
no practical purpose for radio.)
Kaner and Bond offer this definition of measurement: “Measurement is the empirical, objective
assignment of numbers, according to a rule derived from a model or theory, to attributes of
objects or events with the intent of describing them.” I like this definition, to a point, but I’m still
struggling with two problems. Kaner and Bond discuss and attack one of these problems quite
thoroughly: the problem of construct validity. A construct is a class, category, or idealized (as
opposed to concrete) object. Excellent measurement requires us to specify our constructs and the
functions by which we apply numbers to them. (That’s the difference between a measurement
and a metric, by the way; a measurement is an observation linked to an evaluation. A metric is a
function—a way of mapping a number to an observation. A construct is valid when the
description and the classification map to reality in a reasonable way.

Problems ensue when constructs aren’t valid. If the construct isn’t valid, then neither the metric
nor the measurement can be valid either. When that’s a problem, some of your employees feel
it—and the rest know it.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

What Is Measurement?

• Since the time of Aristotle (at least), we’ve known about
two kinds of measurement that inform decisions
• “Two pounds of meat”
• “Too much”, “too little”, “just right”.

• Measurement might be qualitative or quantitative, but
assessment and evaluation are always qualitative:

What do we want?

Measurement is the art and science of making
reliable observations.

—Jerry Weinberg

We waste time and effort when we try to obtain
six-decimal-place answers to whole-number questions.

See two articles on this: http://www.developsense.com/articles/2009-05-
IssuesAboutMetricsAboutBugs.pdf, and http://www.developsense.com/articles/2009-07-
ThreeKindsOfMeasurement.pdf. A related article, too: http://www.developsense.com/articles/2007-11-
WhatCounts.pdf

Two Futures of Software Testing Copyright © 2006 Michael Bolton

How Else Do We Measure?

• First-order measurement
• minimal fuss, direct observation, minimal instrumentation
• used to inform a control action OR to prompt search for more refined

information
• “What’s going on? What should we do? Where should we look?”

Weinberg suggests that, in software development, we’re obsessed with
trying to make third- and second-order measurements when first-order
measurements might be all we need—and are cheaper in every way.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Why Prefer First-Order Measures?

• When you’re driving, are you mostly concerned about…
• your velocity, acceleration, vehicle mass, drag co-efficient,

frictional force? (third-order)
• your engine temperature, RPMs, and current rate of gas

consumption? (second-order)
• looking out the window to avoid hitting something?

I’ve observed many projects
that have crashed because
managers were focused on the
dashboard instead of the traffic
and obstacles around them,
and the road ahead.

What kind of driver
do you trust?

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Control vs. Inquiry Measurement

• A control measurement is a
measurement that drives decisions.
• Any measurement you use to

control a self-aware system will
be used by that system to control
YOU.

• An inquiry measurement is any
measurement that helps you ask
the right questions at the right time.
• Inquiry measurements are also

vulnerable to gaming, but the
stakes are far lower, so there’s
less incentive for manipulation.

This slide is taken from the work of my colleague, James Bach.
http://www.satisfice.com

A metric, by definition, is a simplification of reality, and as such, the same number can represent different
realities.
Any system that involves humans is self-aware. Any metric you use to control a self-aware system will be
used by that system to control YOU.

An inquiry metric might look like a control metric. The difference is how you use it and what you infer
from it.

Observation can go directly to assessment and steering actions without quantified measurement. This is the
first-order approach. Ask what other modes, beside numerical ones, you could use for observation and
evaluation. Start by asking what problem you want to solve or what situation you’d like to assess. Prefer
immediate observation to mediated observation. Make sure that you’ve considered a number of different
possible interpretations, then choose a control action OR a search for more detail.
If you’re worried that observations and assessments are subjective (they are), ask several people who
matter

Two Futures of Software Testing Copyright © 2006 Michael Bolton

The Bright Future:
Measurement for Inquiry, NOT Control

• Metrics like Pass/Fail Ratios and Defect Detection
Percentage ignore almost every relevant factor
• the fact that requirements and bugs are relationships
• difficulty of the problems being solved
• quality of the product design
• quality of the code
• release timing
• who made the release decision, and why
• timing of customer adoption

• …yet we use these bogus metrics to evaluate the
quality of testing?

A line of code is a representation of an idea. A line of code can be as simple as placing a value in a CPU
register or as complex as a multi-branch, multi-condition decision point. A developer’s job is about
learning, solving problems, and shaping and reshaping solutions. Sometimes that means removing lines of
code rather than adding them. There’s far more to a developer’s job than counting the number of
characters that she’s typed. Lines of code are just scaled-up versions of the same silly measure.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

What IS Exploratory Testing?

• I follow (and to some degree contributed to) Kaner’s definition,
which was refined over several peer conferences through 2007:

Exploratory software testing is…

• a style of software testing
• that emphasizes the personal freedom and responsibility
• of the individual tester
• to continually optimize the value of his or her work
• by treating test design, test execution, test result

interpretation, and test-related learning
• as mutually supportive activities
• that run in parallel
• throughout the project.

See Kaner, “Exploratory Testing After 23 Years”,
www.kaner.com/pdfs/ETat23.pdf

Whoa. Maybe it
would be a good

idea to keep it brief
most of the time…

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Why Explore?

• You cannot use a script to
• investigate a problem that you’ve found
• decide that there’s a problem with a script
• escape the script problem you’ve identified
• recognize terrible risks in the product
• determine the best way to phrase a report
• unravel a puzzling situation

•Some managers fear that E.T. depends on skill, but who benefits from any unskilled testing?
•Some managers fear that E.T. is unstructured, but it is structured
•Some managers fear that E.T. is unaccountable, but it can be entirely accountable
•Some managers fear that E.T. is unmanageable, but you can manage anything if you put your mind to it

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Yes, Exploratory Testing Requires Skill

Well, we wanted
to go with

a skilled pilot…

But they’re just
so darned

expensive…

The value of test information
is directly related

to the skill of the tester. Hire (or train) testers with
the skills to provide you

with the information you seek.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Exploratory Testing IS Structured

• We’ve studied the structures of ET, we’ve written about it,
and we know how to teach it

• The structure of ET comes from many sources
• Test design heuristics
• Chartering
• Time boxing
• Perceived product risks
• The nature of specific tests
• The structure of the product being tested
• The process of learning the product
• Development activities
• Constraints and resources afforded by the project
• The skills, talents, and interests of the tester
• The overall mission of testing

In other words,
it’s not “random”,

but systematic.

Not procedurally
structured, but

cognitively structured.

http://www.developsense.com/resources.html#exploratory

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Exploratory Testing IS Accountable
Concise Documentation Minimizes Waste

Risk ModelCoverage Model Test Strategy
Reference

Risk CatalogTesting Heuristics
General

Project-
Specific Status

Dashboard
Schedule BugsIssues

Detailed procedural documentation is expensive and largely unnecessary.

Tutorial documentation is also usually unnecessary, but if you do it, then keep it separate from the working
documents.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Exploratory Testing IS Accountable
Session-Based Test Management

• Charter
• A clear, concise mission for a test session

• Time Box
• 90-minutes (+/- 45)

• Reviewable Results
• a session sheet—a test report whose raw

data can be scanned, parsed and
compiled by a tool

• Debriefing
• a conversation between tester and

manager or test lead

vs.

42
For more info, see http://www.satisfice.com/sbtm

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Exploratory Testing IS Manageable

Guide testers with personal supervision and
concise documentation of test ideas. Meanwhile,
train them so that they can guide themselves and
be accountable for increasingly challenging work.

Test
Ideas

Achieve excellent test design by
exploring different test designs

while actually testing and
interacting with the system

Product

Product
or spec

Tests

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Exploratory Testing IS Manageable

Guide testers with personal supervision and
concise documentation of test ideas. Meanwhile,
train them so that they can guide themselves and
be accountable for increasingly challenging work.

Test
Ideas

Note the role of checks, especially
when done by programmers as they

write and maintain the code, in creating
a more testable product.

Product

Product
or spec

Checks

Tests

Two Futures of Software Testing Copyright © 2006 Michael Bolton

We’re not here to
enforce The Law.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

We are neither
judge nor jury.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

We’re here to add value,
not collect taxes.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

We’re here
to be a service
to the project,
not an obstacle.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

of Software Testing

These are not the only two futures.
They’re offered for your consideration.

The choices are up to you.

The future of testing
is up to us.

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Who I Am

Michael Bolton
(not the singer, not the guy in Office Space)

DevelopSense, Toronto,
Canada

mb@developsense.com
+1 (416) 992-8378

http://www.developsense.com

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Web Resources

 Michael Bolton
http://www.developsense.com
 James Bach http://www.satisfice.com
 Cem Kaner http://www.kaner.com
 The Florida Institute of Technology
 http://www.testingeducation.org
 http://www.testingeducation.org/BBST/index.html

 StickyMinds http://www.StickyMinds.com
 Risks Digest http://catless.ncl.ac.uk/risks

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Bibliography
How To Think About Testing

• Perfect Software and Other Illusions About Testing
• Gerald M. Weinberg

• Lessons Learned in Software Testing
• Cem Kaner, James Bach, and Bret Pettichord

• “Software Testing as a Social Science”
• Cem Kaner; http://www.kaner.com/pdfs/KanerSocialScienceSTEP.pdf

• Testing Computer Software
• Cem Kaner, Jack Falk, and Hung Quoc Nguyen

• An Introduction to General Systems Thinking
• Gerald M. Weinberg

• Exploring Requirements: Quality Before Design
• Gerald M. Weinberg

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Bibliography
Recommended Test Technique Books

• A Practitioner’s Guide to Test Design
• Lee Copeland

• How to Break Software
• James Whittaker

• How to Break Software Security
• James Whittaker and Herbert Thompson

• Lessons Learned in Software Testing
• Cem Kaner, James Bach, and Bret Pettichord

• Testing Applications on the Web
• Hung Quoc Nguyuen

• Hacking Web Applications Exposed
• Joel Scambray and Mike Shema

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Bibliography
Jerry Weinberg

• Quality Software Management Vol. 1: Systems
Thinking

• Quality Software Management Vol. 2: First
Order Measurement

• Secrets of Consulting: How to Give and Get
Advice Successfully

• Anything by Jerry Weinberg

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Bibliography
Richard Feynman

• The Pleasure of Finding Things Out
• see the Appendix to the Challenger Report.

• Surely You’re Joking, Dr. Feynman!
Adventures of a Curious Character

• What Do You Care About What Other
People Think?

Two Futures of Software Testing Copyright © 2006 Michael Bolton

Bibliography
Other Areas

 The Social Life of Information
• Paul Duguid and John Seely Brown

 Please Understand Me
 David Kiersey
 The Myers-Briggs Type Inventory, which provides insight into

your own preferences and why other people seem to think so
strangely

 The Visual Display of Quantitative Information
 Edward Tufte
 How to present information in persuasive, compelling, and

beautiful ways
 A Pattern Language
 Christopher Alexander et. al
 A book about architecture
 even more interesting as a book about thinking and creating

similar but unique things—like computer programs and tests for
them

