
1

Test Framing

Michael Bolton
DevelopSense

http://www.developsense.com
TestNet

May, 2011

Michael Bolton

http://www.developsense.com
michael@developsense.com

Important Questions

• Variations:
• Why are you planning to run that test?
• Why are you running that test right now?
• Why did you run that test?
• Why perform that step?
• Why make that observation?

Important Questions

• Variations:
• Why aren't you planning to run that test?
• Why aren't you running that test right now?
• Why didn't you run that test?
• Why not perform this step?
• Why not make that observation?

Important Questions

• Variations:
• Why didn't you find that bug earlier?
• Why did you apparently ignore that requirement?
• Why did you miss that symptom?
• Why did you misinterpret that symptom?

2

Important Questions

• Variations:
• Why do you say that this isn't working properly?
• What requirement is being left unfulfilled here?
• Why do you think that's a requirement?
• For whom might this be a problem?
• Do you think a user would ever do that?

Even more generally…

• Variations:
• Why are you not doing that?
• How does this test relate to a requirement?
• How does this test relate to a risk?
• How does this test relate to your mission?

9

To test is to compose, edit, narrate, and
justify three parallel stories.

1. You must tell a story about the product…
…about how it failed, and how it might fail...
…in ways that matter to your various clients.

2. But also tell a story about how you tested it…
…how you configured, operated and observed it…
…about what you haven’t tested yet…
…or won’t test at all…

3. And also tell a story that explains how good your testing was…
…why your testing has been good enough…
…why what you haven’t done (so far) doesn’t matter…
…what the risks and costs of testing are…
…how testable (or not) the product is…
…what you need and what you recommend.

What is test framing?

Test framing is the chain of logical connections that structure
and inform a test, from the mission to the test result

Mission

Test Result

If these premises and facts are true…
…and if we observe this specific behaviour…

…and we apply this relevant oracle…
…then we can make these conclusions about the...

Given this…

Vocabulary

• system
• a set of things in meaningful relationship

• structure
• that which forms the unchanging parts and relationships of a

system; a consistent pattern for the system; “that which remains”

• narration
• telling a story that fits in time

• framing
• via logic and narrative, placing the test in logical relationship with

the structures that inform it

Vocabulary

• logic
• a formal means of convincing or proving facts via valid arguments
• …using a set of propositions linked by connectives or operators

• proposition
• a simple statement of fact or inference

• connectives
• formal logic: if, and, or, and not, else, if and only if, therefore
• less formally: because, unless, otherwise…

Framing provides traceability, but testers often limit traceability as being
between tests and requirements documents—explicit requirements.

Can you demonstrate traceability between tests and implicit requirements?

3

Much More Traceability

1. Product traces to specifications.
2. Specifications trace to standards.
3. Test sessions trace to product versions.
4. Test sessions trace to specifications.
5. Test sessions trace to logs which trace to product, playbook and

specifications.
6. Test sessions trace to charters and charters to playbook.
7. Playbook traces to standards.
8. Playbook traces to specifications.
9. Playbook traces to risks which trace to specifications…
10. Tests trace to risk…
11. Tests trace to implicit requirements…
12. Tests trace to other tests…

How Do We Know What “Is”?

“If I see X, then probably Y, because probably A, B, C, D, etc.”

• THIS CAN FAIL:
• Getting into a car–oops, not my car.
• Bad driving—why?
• Bad work—why?
• Inexpicable behaviour—why?
• I can never find the sugar—why

One Structure of Testing

15

Analysis ExperimentsKnowledge

Produces Informs

- Configure
- Operate
- Observe
- Evaluate

- Testing Knowledge
- Technical Knowledge
- Domain Knowledge
- General Knowledge

Test
Procedures

Question

Answer

Investigate
bugs

Informs

Testing Story

Produces

• Mission
• Givens
• Work Products

• Risk
• Coverage
• Oracles
• Cost/Value
• Troubleshooting

Product
Story

16

Project Environment
Aspects of Our Context

• Customers
• Anyone who is a client of the test project.

• Information
• Information about the product or project that is needed for testing.

• Developer relations
• How you get along with the programmers.

• Team
• Anyone who will perform or support testing.

• Equipment & tools
• Hardware, software, or documents required to administer testing.

• Schedule
• The sequence, duration, and synchronization of project events.

• Test Items
• The product to be tested.

• Deliverables
• The observable products of the test project.

17

Quality Criteria
Identifying Value and Threats To It

• Capability • Compatibility
• Reliability • Supportability
• Usability • Testability
• Security
• Scalability

• Maintainability
• Portability

• Performance • Localizability
• Installability

Many test approaches focus on Capability
(functionality) and underemphasize the other criteria 18

Product Elements
Ways to Model and Cover The Product

• Structure
• What are the pieces and how do they fit together?

• Function
• What does the product do?

• Data
• What does the product do things to?

• Platform
• What does the product depend upon?

• Operations
• How do people actually use the program?

• Time
• How does the product interact with time?

4

19

Test Techniques
General Ways to Test

• Function testing
• Test what it does

• Domain testing
• Divide and conquer the data

• Stress testing
• Overwhelm or starve the product

• Flow testing
• Do one thing after another after another

• Scenario testing
• Test to a compelling story

20

Test Techniques
General Ways to Test

• Claims testing
• Test everything that people say it should do

• User testing
• Involve the users (or systematically simulate them)

• Risk testing
• Imagine a problem, and then look for it

• Automatic testing
• Perform zillions of tests, aided by machines

Thirty-Six Test Strategy Heuristics

Customers
Information
Developer relations
Team
Equipment & tools
Schedule
Test Items
Deliverables

Structures
Functions
Data
Platforms
Operations
Time

Capability
Reliability
Usability
Security
Scalability
Performance
Installability
Compatibility
Supportability
Testability
Maintainability
Portability
Localizability

Function testing
Domain testing
Stress testing
Flow testing
Scenario testing
Claims testing
User testing
Risk testing
Automatic testing

Project
Environment

Product
Elements

Quality Criteria

Test
Techniques

22

Consistency (“this agrees with that”)
an important theme in oracles

• History: The present version of the system is consistent with past versions of it.
• Image: The system is consistent with an image that the organization wants to

project.
• Comparable Products: The system is consistent with comparable systems.
• Claims: The system is consistent with what important people say it’s supposed

to be.
• Users’ Expectations: The system is consistent with what users want.
• Product: Each element of the system is consistent with comparable elements in

the same system.
• Purpose: The system is consistent with its purposes, both explicit and implicit.
• Statutes: The system is consistent with applicable laws.
• Familiarity: The system is not consistent with the pattern of any familiar

problem.

Consistency heuristics rely on the quality of your
models of the product and its context.

What if you have an unframed test?

But if you can’t do it perfectly, or right away,
that might be okay. Why?

To test a very simple product meticulously,
part of a complex product meticulously,
or to maximize test integrity…

1. Start the test from a known (clean) state.
2. Prefer simple, deterministic actions.
3. Trace test steps to a specified model.
4. Follow established and consistent lab procedures.
5. Make specific predictions, observations and records.
6. Make it easy to reproduce (automation helps).

5

How can you justify an unframed test?

Focus in testing is valuable, but we must also practice
de-focusing to expose new problems
and to trigger new ideas about risk.

To find unexpected problems,
elusive problems that may occur in the field,
or more problems quickly in a complex product…

1. Start from different states (not necessarily clean).
2. Prefer complex, challenging actions.
3. Generate tests from a variety of models.
4. Question your lab procedures and tools.
5. Try to see everything with open expectations.
6. Make the test hard to pass, instead of easy to reproduce.

Galumphing
A Defocusing Heuristic to Exploit Variability

• doing things in a deliberately over-elaborate way
• adding lots of unnecessary but inert actions that

are inexpensive and shouldn’t (in theory) affect the
test outcome
• bring up a dialog and dismiss it
• modify an option and rescind it
• perform an action and reverse it
• re-selecting default options
• inserting an expression where a single value would do
• over-filling an input field, then fixing it

Exploiting Variation To Find More Bugs

• Micro-behaviors
• Unreliable and distractible humans make each test a little bit

new each time through.
• Randomness

• Can protect you from unconscious bias (but be careful; humans
almost always act non-randomly)

• Data Substitution
• The same actions may have dramatically different results when

tried on a different database, or with different input.
• Timing/Concurrency Variations

• The same actions may have different results depending on the
time frame in which they occur and other concurrent events.

• Platform Substitution
• Supposedly equivalent platforms may not be.

Exploiting Variation To Find More Bugs

• Scenario Variation
• The same functions may operate differently when employed in

a different flow or context.
• State Pollution

• Hidden variables of all kinds frequently exert influence in a
complex system. By varying the order, magnitude, and types
of actions, we may accelerate state pollution, and discover
otherwise rare bugs.

• Sensitivities and Expectations
• Different testers may be sensitive to different factors, or make

different observations. The same tester may see different
things at different times or when intentionally shifting focus to
different things.

