
1

Who Does Quality Assurance?

Michael Bolton
DevelopSense

http://www.developsense.com
April, 2011

2

Updates

• This presentation is ALWAYS under construction
• Updated slides at http://www.developsense.com/past.html
• All material comes with lifetime free technical support

I’m a consultant. I specialize in solving testing problems that other people can’t
solve—and helping them learn how to do that for themselves. You can read more
about that at http://www.developsense.com

This presentation, like all of my work, comes with lifetime free technical support. I’m
delighted to received follow-up questions, comments, disagreements, alternative
interpretations, amplifications, and stories. Drop me a line at
michael@developsense.com; call me at +1 (416) 656-5160; reach me on Twitter
@michaelbolton. I’m often found in other places too, but those are where
messages will tend to get to me most quickly.

4

Michael Bolton

http://www.developsense.com
michael@developsense.com

I'm a software tester, consultant, and trainer with 20 years of experience around the
world, testing, developing, managing, and writing about software. I am the co-
author (with senior author James Bach) of Rapid Software Testing, a course that
presents a methodology and mindset for testing software expertly in uncertain
conditions and under extreme time pressure.

Currently, I lead DevelopSense, a Toronto-based consultancy. Prior to that, I was
with Quarterdeck Corporation for eight years, during which I managed the
company’s flagship products and directed project and testing teams both in-house
and around the world. And even deeper in the past, I was a stage manager for a
professional school touring theatre company. (You have no idea how dealing with
actors, children, schoolteachers, principals, and janitors prepares one for dealing
with programmers, business people, marketers, and executives!)

5

Let’s Start With a Simple Question:

6

Is Quality Conformance to Standards?

7

Is Quality “Conformance to Expectations”?

• I expected it to suck.
• It sucked.

All trademarks are the property of their respective owners.

8

Quality Answers
• Quality is “value to some person(s)”

– Jerry Weinberg
• “…who matter.”

– James Bach and Michael Bolton
• Decisions about quality are always political

and emotional
– made by people with the power to make them
– require a determination of who matters
– made with the desire to appear rational
– yet ultimately based on how those people feel

9

If you’re not a manager, do you…

hire staff?

fix project problems?

approve design decisions?

allocate staff?

set the company’s strategic direction?

allocate training budgets?

set the schedule?

decide on raises?

control the budget?

sign the customer contracts?

choose the production model?

set the product scope?
decide which problems to fix?

settle disagreements?

fire some staff?

declare priorities?

10

Can employees answer Yes
to all of those questions?

Any? No?

11

How Can Employees Assure Quality?

THEY CAN’T.

BUT MANAGERS CAN.

Actually, that’s not strictly true. Employees can assure the quality of their own work,
and by and large, they’re intrinsically motivated to do it.
What employees can’t do, though, is to assure the quality of the product and project
overall.
Even though ideas like Lean manufacturing and Agile development propose group
decision-making, I’ve never seen more than a couple of names on a cheque or on
hiring approvals. Consensus is really important. It’s a foolish manager that ignores
his people, but final decisions still rest with some person.

12

How Can Managers Assure Quality?
At least five things that you must do:

1. Find out who matters.

2. Note where the buck stops (with you).

3. Understand the work being done.

4. Provide the needed resources.

5. Clear the obstacles.

From my experience as a program manager for a commercial software company, I
argue that there are five things that managers must do to assure quality:

1. Find out who matters. Sort out whose ideas of quality matter, and what those
ideas are.

2. The buck stops with you. You must accept responsibility for the quality of the
entire product or service whose development or performance you manage. If
you have a ship/no ship decision, you truly do own quality. You’re the only
person who can credibly claim, for the overall product, to assure quality.

3. To do that well, you must understand the work being done. Understanding
comes with direct observation, participation, and interaction. If you observe by
the numbers, instead of doing the work, you’ll end up managing the numbers,
not the work.

4. As a manager, it’s your job to provide resources. (And by that I don’t mean
people. Please don’t refer to people as “resources”. Refer to them as people.)
For your people, you must provide the tools, training, support, reference
materials, and most of all, the time that your employees and contractors need.

5. And finally, you must remove any form of obstacle, measurement, or control that
reduces people’s intrinsic motivation on the one hand, and your ability to
observe on the other.

13

So What Is Testing?
• “Questioning a product in order to evaluate it.”

– James Bach

• “Gathering information with the intention of informing a
decision.”
– Jerry Weinberg

• “A technical, empirical investigation of a product, done
on behalf of stakeholders, with the intention of revealing
quality-related information of the kind that they seek.”
– Cem Kaner

With my co-author James Bach, I teach an approach to testing computer software
called Rapid Software Testing, which we define as the fastest, least expensive
testing that we can do while remaining credible, accountable, and focused on
completely fulfilling the testing misison. In the course, we use the first of these
three definitions.
Two things that these definitions have in common: they’re all about questioning,
investigation, an information search. The other thing is that none contains anything
about assuring quality. Testing, and testers, don’t do that. It’s your response to the
information and to all of the other information available to you—your awareness and
your management actions—that assure quality. Testing helps with that awareness,
but it isn’t quality assurance.

14

What Is Testing?

• Excellent testing isn’t checking; it’s more like
anthropology

• Anthropologists investigate many things
– biology (human mechanisms; human “code” and

“hardware”)
– archaeology (human history)
– linguistics (human communication)
– cultures (what it means to be human)

Testing is the investigation of systems composed
of people, products, and services.

If you focus only on the product and its functions, you leave out
questions of value and other relationships that include people.

Anthropology is highly multidisciplinary. While there are areas of focus,
anthropology doesn’t look at a single part of the human system; it looks at
the elements of the system and the relationships between them.
One insight from anthropology, relevant to product management, is that other
cultures—cultures that we sometimes refer to as “primitive”—are in fact quite
sophisticated. They are specific adaptations to their context and their
environment, and our own cultures would be maladapted to that environment.
Cultures are always in flux, too.
Wade Davis speaks particularly eloquently about this. See his books,
including The Wayfinders, and see also his two TED talks:

http://www.ted.com/talks/lang/eng/wade_davis_on_endangered_cultures.htm
l
http://www.ted.com/talks/lang/eng/wade_davis_on_the_worldwide_web_of_b
elief_and_ritual.html

15

Why We Must Test

• A product is far more
than its components.

• Quality is far more than
the absence of defects.

• Testing is far more than
determining that some
aspect of the product is
“correct”.

Testing makes informed decisions about quality possible.

Quality is value to some person(s).

A product is far more than its components. For example, a software product is far
more than the instructions for the device. A car is far more than the parts arranged
in some formation; a house is not merely a set of building materials arranged in a
house design pattern, as Cem Kaner puts it. A product is part of a system that also
includes the services around it.

Quality is not merely the absence of defects. For example, a high-quality software
product is far more than one with few errors in the code. You could have a
program with no coding errors in it, a retail store with perfect inventory and
information systems,

For example, serious software testing is not about writing test cases that return a
pass or fail result. We can’t test for the absence of defects anyway. I can’t convince
my daughter that there are no monsters under her bed. Even when we look, there
can still be invisible monsters.

Testing is an empirical investigation: how will this product work in the world, and
with the world?

16

Managers Are Like Testers
• A good tester doesn’t simply follow scripts asking

• A good tester investigates and asks

In excellent investigation, self-management is key.
http://www.developsense.com/blog/2010/02/testing-and-management-parallels/

Excellent testers, like excellent managers, are good at self management.
Other blog entries on test management can be found at
http://www.developsense.com/blog/category/management/.

17

Why Testing?

• Testing is applied critical thinking.
• Testing consists of cycles of analysis, exploration,

discovery, investigation, and learning.
• Whether you hire people called “tester” or not, testing is

one of the things that makes quality assurance possible.

Excellent
testing lights
the way of
your project.

If you don’t hire testers, that’s okay. But someone had better be doing testing; that
is, thinking critically about your product or service, and then applying that
thinking to investigation of the nature of the product and the associated risks.

I like to think about risk in terms of three basic ideas:
1) A bad thing that could happen (like a programmer making a coding error, or a

machine producing a misshapen widget).
2) The consequences of that bad thing (like the coding error permitting access to

unauthorized users, or the installation of the misshapen widget triggering a
product recall).

3) A chance that we’re willing to take. (We know that we’re uncertain about this
area of the product, but we’re willing to risk shipping it without further testing.)

You can read more about risk here:
http://www.developsense.com/blog/2011/04/more-of-what-testers-find-part-ii/

18

So What Are We Testers?

The tester doesn’t have to reach conclusions or make recommendations
about how the product should work. Her task is to expose credible
concerns to the stakeholders.

- Cem Kaner, Approaches to Test Automation, 2009 (my emphases)

19

Testers Are Sensory Instruments

The idea of testers themselves being test instruments comes to me from Cem
Kaner. I’ve illustrated and extended the metaphor somewhat, but the basic idea is
his.

20

Why Do We Measure?
• self-assessment and improvement
• evaluating project status
• evaluating staff performance
• informing others about the characteristics of the

product
• informing external authorities about the

characteristics of the product
—Kaner and Bond

See http://www.kaner.com/pdfs/metrics2004.pdf
See Robert Austin, Measuring and Managing Performance in Organizations

21

But there’s an over-riding reason…

Ignore the risks of measurement, and distortion and dysfunction
are likely. Manage to your metric, and dysfunction is guaranteed.

Quantifying something complex provides a kind of observational integrity,
but with a side effect: information loss.

Think of all testing and measurement as providing
partial answers that might be useful.

Decisions about quality are always political and emotional. Moreover, the
problems that we must solve are often complex, and defy easy
understanding. This can be scary. Many—even most—people would prefer
at least to appear rational. Therefore numbers are often used to help
simplify complex problems and justify subjective, emotional and political
decisions.
That’s okay, but there are risks.
The expression “partial answers that might be useful” is due to Cem Kaner,
from his talk “Software Testing as a Social Science”.

22

How Do We Measure?

• Third-order measurement
– highly instrumented, used to

discover natural laws
– “What will happen? What

always happens?”

• Second-order measurement
– often instrumented, used to

refine first-order observation
– used to tune existing systems
– “What’s really going on here,

exactly? What’s happening?”

People often quote Lord Kelvin: “I often say that when you can measure what you
are speaking about, and express it in numbers, you know something about it; but
when you cannot express it in numbers, your knowledge is of a meager and
unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in
your thoughts, advanced to the stage of science, whatever the matter may be.”[1]
But, few note the sentence that precedes the passage: “In physical science the first
essential step in the direction of learning any subject is to find principles of
numerical reckoning and practicable methods for measuring some quality
connected with it.” Note that he’s not talking about quality in terms of value, but
rather in terms of properties of things. (Oh, and by the way, Lord Kelvin also
asserted that heavier-than-air flight was impossible, and that there was no practical
purpose for radio.)
Kaner and Bond offer this definition of measurement: “Measurement is the
empirical, objective assignment of numbers, according to a rule derived from a
model or theory, to attributes of objects or events with the intent of describing
them.” I like this definition, to a point, but I’m still struggling with two problems.
Kaner and Bond discuss and attack one of these problems quite thoroughly: the
problem of construct validity. A construct is a class, category, or idealized (as
opposed to concrete) object. Excellent measurement requires us to specify our
constructs and the functions by which we apply numbers to them. (That’s the
difference between a measurement and a metric, by the way; a measurement is an
observation linked to an evaluation. A metric is a function—a way of mapping a
number to an observation. A construct is valid when the description and the
classification map to reality in a reasonable way.

Problems ensue when constructs aren’t valid. If the construct isn’t valid, then
neither the metric nor the measurement can be valid either. When that’s a problem,
some of your employees feel it—and the rest know it.

23

What Is Measurement?

• Since the time of Aristotle (at least), we’ve known about
two kinds of measurement that inform decisions
– “Two pounds of meat”
– “Too much”, “too little”, “just right”.

• Measurement might be qualitative or quantitative, but
assessment and evaluation are always qualitative:

What do we want?

Measurement is the art and science of making
reliable observations.

—Jerry Weinberg

We waste time and effort when we try to obtain
six-decimal-place answers to whole-number questions.

See two articles on this: http://www.developsense.com/articles/2009-05-
IssuesAboutMetricsAboutBugs.pdf, and
http://www.developsense.com/articles/2009-07-ThreeKindsOfMeasurement.pdf. A
related article, too: http://www.developsense.com/articles/2007-11-WhatCounts.pdf

24

How Else Do We Measure?

• First-order measurement
– minimal fuss, direct observation, minimal instrumentation
– used to inform a control action OR to prompt search for more

refined information
– “What’s going on? What should we do? Where should we look?”

Weinberg suggests that, in software development, we’re obsessed with
trying to make third- and second-order measurements when first-order
measurements might be all we need—and are cheaper in every way.

25

Why Prefer First-Order Measures?
• When you’re driving, are you mostly concerned about…

– your velocity, acceleration, vehicle mass, drag co-efficient,
frictional force? (third-order)

– your engine temperature, RPMs, and current rate of gas
consumption? (second-order)

– looking out the window to avoid hitting something?

I’ve observed many projects
that have crashed because
managers were focused on the
dashboard instead of the traffic
and obstacles around them,
and the road ahead.

What kind of driver
do you trust?

26

Control vs. Inquiry Measurement
• A control measurement is a

measurement that drives
decisions.
– Any measurement you use to

control a self-aware system will be
used by that system to control
YOU.

• An inquiry measurement is any
measurement that helps you ask
the right questions at the right
time.
– Inquiry measurements are also

vulnerable to gaming, but the
stakes are far lower, so there’s less
incentive for manipulation.

This slide is taken from the work of my colleague, James Bach.
http://www.satisfice.com

A metric, by definition, is a simplification of reality, and as such, the same number
can represent different realities.
Any system that involves humans is self-aware. Any metric you use to control a self-
aware system will be used by that system to control YOU.

An inquiry metric might look like a control metric. The difference is how you use it
and what you infer from it.

Observation can go directly to assessment and steering actions without quantified
measurement. This is the first-order approach. Ask what other modes, beside
numerical ones, you could use for observation and evaluation. Start by asking what
problem you want to solve or what situation you’d like to assess. Prefer immediate
observation to mediated observation. Make sure that you’ve considered a number
of different possible interpretations, then choose a control action OR a search for
more detail.
If you’re worried that observations and assessments are subjective (they are), ask
several people who matter

27

Obstacles
• In software testing (my field)

we talk about finding bugs,
and reporting them.

• There’s something worse
than a bug:
an issue—something that
slows down or prevents your
ability to find a problem.

• Mechanisms intended to provide management
information often ignore issues.

• Bug reporting systems focus on bugs, and suppress
reporting of issues

• Mechanisms intended to provide management control
often create issues.

For a description of issues and how we might report them, see
http://www.developsense.com/blog/2011/01/youve-got-issues/.

28

The Fundamental Regulator Paradox

• “The task of a regulator is to eliminate
variation, but this variation is the ultimate
source of information about the quality of
its work. Therefore, the better job a
regulator does, the less information it gets
about how to improve.” —Jerry Weinberg

This quote is taken from General Principles of System Design, by Gerald M. and
Daniela Weinberg.

29

Learning From Failure

• “Experience comes from bad judgment; good
judgment comes from experience.”

– Barry lePatner
• “Try again; fail again; fail better.”

– Samuel Beckett
• Success comes from learning, but learning

comes mostly from failure
– see Henry Petroski, Charles Perrow, Dietrich Dörner,

and others on engineering
– see Gever Tulley on education

http://www.youtube.com/watch?v=hvHViFc0ekw

Gever Tulley’s video is deeply inspiring for anyone interested in learning. TED
Talks (http://www.ted.org) contain a wealth of wonderful learning-oriented
presentations.

30

Learning from Failure
• In our teaching and practice of software testing,

James Bach and I advocate accelerating learning
by combining
– increasing freedom and increasing responsibility
– close personal supervision
– continuous feedback and increasing accountability,

via…
– conversation reinforced by concise documentation
– in a fault-tolerant environment.

This is of the essence of our approach towards exploratory testing, too. It’s
designed to reinforce rapid learning about a product, and rapid development of skill.
This means that, in short order, testers need not depend upon personal supervision,
formulaic procedures, or favourable environments to do excellent work.

You can read about our classes at http://www.developsense.com/courses.html.
You can also peruse my Web site and James Bach’s, http://www.satisfice.com for
more on what we have to say about testing and tester skill.

31

Positive Deviance
• In any population, there’s one person who is outperforming

all the others. What does that person do?
• One catch is that you have to observe the work as it’s being

done, which means observing a system that includes
– individuals
– related individuals and groups
– artifacts
– outputs
– resources

See The Power of Positive Deviance: How Unlikely Innovators Solve the
World's Toughest Problems (Pascale, Sternin, and Sternin)

See also “The Palmer Method” (video),
http://www.positivedeviance.org/resources/flv/jasper.flv

“Positive Deviance is based on the observation that in every community there are
certain individuals or groups whose uncommon behaviors and strategies enable
them to find better solutions to problems than their peers, while having access to
the same resources and facing similar or worse challenges.
“The Positive Deviance approach is an asset-based, problem-solving, and
community-driven approach that enables the community to discover these
successful behaviors and strategies and develop a plan of action to promote their
adoption by all concerned.”
http://www.positivedeviance.org

The Palmer Method video is a demonstration by a patient escort, Jasper Palmer,
who demonstrates a method for removing a contaminated paper gown after it has
been in contact with a potentially contaminated patient. The problem was that
gowns would quickly overflow garbage containers, exposing staff and patients alike
to methicillin-resistant staphylococcus aureus (MRSA, commonly known as a
superbug). Watch how this fellow solves the problem!

32

Leadership

• “Creating an environment in which
everyone is empowered.”

• Not all managers are leaders, and not all
leaders are managers.

In my community, leadership means "creating an environment in which everyone is
empowered". In groups of people, there are many people who lead by example, by
honouring the contributions of others, by speaking up when it's time to speak up, by
teaching or mentoring or coaching, by allowing themselves to be taught or mentored
or coached. Such people don't always carry the title of manager. Often they're
regular employees, individual contributors. Sometimes we speak of "thought
leaders" in a group. We might also consider "community leaders" who never seek
election to public office, but who participate at the food banks, write letters to the
editors and the politicians, help to organize and staff community events. We might
not think of those people as leaders, since they don't have titles or elected offices or
supervisory responsibility, but they are leaders nonetheless. They make it possible
for other people to contribute and to have better lives. That's the kind of leadership
I'm speaking of here.

Conversely (and sadly), some people with the title "manager" do few or none of the
empowering things I've noted above. The great ones do all of them, and I've had
the privilege of working for, and with, a couple of those.

For more on that topic, see /Becoming a Technical Leader/, by Gerald M. Weinberg.
Also see /The Power of Positive Deviance/, by Pascale, Sternin, and Sternin.

33

Who Contributes to Quality?

• Designers and builders deliver quality by
creating and producing things of value.

• Testers help to defend quality by exploring,
discovering, and investigating problems that
threaten quality.

• Managers assure quality by empowering
people, providing resources and removing
obstacles.

34

Michael Bolton

http://www.developsense.com
michael@developsense.com

35

References: Jerry Weinberg
• Perfect Software and Other Illusions About Testing
• Quality Software Management

– Volume 1: Systems Thinking
– Volume 2: First Order Measurement

• Quality Software Management: Requirements Before
Design

• An Introduction to General Systems Thinking
• The Psychology of Computer Programming

– Jerry Weinberg

36

References: Cem Kaner
• The Ongoing Revolution in Software Testing

– http://www.kaner.com/pdfs/TheOngoingRevolution.pdf

• Software Testing as a Social Science
– http://www.kaner.com/pdfs/KanerSocialScienceSTEP.pdf

• Software Engineering Metrics: What Do They Measure
and How Do We Know? (with Walter P. Bond)
– www.kaner.com/pdfs/metrics2004.pdf

• Approaches to Test Automation
– http://www.kaner.com/pdfs/kanerRIM2009.pdf

• Lessons Learned in Software Testing
– Kaner, Bach, & Pettichord

37

Book References
• The Black Swan
• Fooled by Randomness

– Nassim Nicholas Taleb

• Secrets of a Buccaneer Scholar
– James Bach

• The Power of Positive Deviance
– Pascale, Sternin, and Sternin

• Sciences of the Artificial
– Herbert Simon

• How Doctors Think
– Jerome Groopman

38

Book References
• Measuring and Managing Performance in Organizations

– Robert D. Austin

• Tools of Critical Thinking
– David Levy

• Mistakes Were Made (But Not By Me)
– Carol Tavris and Eliot Aronson

• How to Lie With Statistics
– Darrell Huff

• The Visual Display of Quantitative Information
• Envisioning Information
• Visual Explanations
• Beautiful Evidence

– Edward Tufte

Who Does Quality Assurance?
April 29, 2011
Follow-up Questions to the Webinar

Q. How do you ensure that you are focussing on quality assurance and adding value and
not being perceived as policing or auditing?

If you’re a tester, I think the easiest way to deal with that issue is to stay out of the quality
assurance business entirely (except to assure the quality of your own work). As testers,
the value that we add is in the form of information about the product and the project. We
don’t produce or change or manage the product, but we add to the system of the product
and what people know about it. In that sense, we’re like investigative reporters, not
police.

Q: I would assert "Checking" is still very important and testing would not even matter if
you didn’t first check. Is it (or should it be) the same person responsible for checking and
testing? Should testers own both?

A: Yes, checking is very important. (I’ve written a lot about checking; see here
http://www.developsense.com/blog/2009/08/testing-vs-checking.html and here
http://www.developsense.com/blog/2009/11/merely-checking-or-merely-testing/ for
entry points.) At the unit level, checks provide the first line of defense against problems
that might otherwise be buried and much harder to find later on. I would argue that
checking tends to be cheapest and easiest when programmers do it, with the added benefit
that the feedback loop is very short. There's a risk there, though: a programmer's checks
will often recapitulate the problems that are in the production code. That's why pairing
and other forms of review are important too. Jonathan Kohl has noted that testers' ideas
about risk are different from programmers' ideas about risk, and he has written some very
useful stuff on why that can be both a good and a bad thing in various contexts.
Checking and testing both benefit from collaboration and review, it seems to me.

It’s not that testing wouldn’t matter if you didn’t check first, but it would be harder and
slower. In particular, there would be more noise in the process. I’ve written a good deal
about that here: http://www.developsense.com/blog/2009/11/why-is-testing-taking-so-
long-part-1/

I'm more skeptical about the cost and the value of checking higher up. At the lower
integration levels, it seems to remain relatively cheap and easy for a lot of purposes. Very
generally, it seems to me that the higher up you go, (programmed) checking is harder to
do, takes longer, and is less valuable considering that lower-level checks are more likely
to have found the kinds of problems that yield to checking. In addition, an emphasis on
checking presents opportunity cost against other kinds of testing we could do, and it
might (might) tempt us to relax our vigilance for problems that we didn't anticipate. So I'd
emphasize more human interaction the closer we get to human interfaces. If the program
lends itself well to rapid development of checks at higher levels, some checking might be
appropriate. Other people are strong advocates for that. My own experience is that it's

easy to get sucked into programming high-level checks when I might better spend my
time looking for new problems and new risks. That's why diversity—lots of different
people, models, approaches, preferences, temperaments—on a team is really important.

One more note: checking requires tools, but just about any kind of testing can be
supported by tools. I'd like testers to think very expansively in terms of how tools might
help them do all kinds of things—visualization, data generation, recording, reporting. So
checking is not the only application for tools, by any means.

Q: At the end of your presentation you made the point that "leaders" are sometimes not
"managers" — please expand if possible.

A: Sure. In my community, leadership means "creating an environment in which
everyone is empowered". In groups of people, there are many people who lead by
example, by honouring the contributions of others, by speaking up when it's time to speak
up, by teaching or mentoring or coaching, by allowing themselves to be taught or
mentored or coached. Such people don't always carry the title of manager. Often they're
regular employees, individual contributors. Sometimes we speak of "thought leaders" in
a group. We might also consider "community leaders" who never seek election to public
office, but who participate at the food banks, write letters to the editors and the
politicians, help to organize and staff community events. We might not think of those
people as leaders, since they don't have titles or elected offices or supervisory
responsibility, but they are leaders nonetheless. They make it possible for other people to
contribute and to have better lives. That's the kind of leadership I'm speaking of here.

Conversely (and sadly), some people with the title "manager" do few or none of the
empowering things I've noted above. The great ones do all of them, and I've had the
privilege of working for, and with, a couple of those.

For more on that topic, see Becoming a Technical Leader, by Gerald M. Weinberg. Also
see The Power of Positive Deviance, by Pascale, Sternin, and Sternin.

Q: What do you do when micro-managing threatens quality?
A: It depends who the "you" in the question is—the person micromanaging, or the person
being micromanaged. Micromanagement, in my observation, represents the collapse of
trust. So for managers, one of the first questions to ask is "why don't I trust my people?"
For an employee, a key question is "Why doesn't my manager trust me?" Often the
problem is that the tester isn't as good as he or she might be at describing or accounting
for his or her work. In testing, that depends on a skill that James Bach and I call test
framing. (You can read about that here:
http://www.developsense.com/blog/2010/09/test-framing/). In other lines of work, it
might be worth looking at similar patterns for making the work credible and accountable.

Presumably someone is micromanaging because they're concerned about a particular risk.
So there are also risk questions—what could go wrong? What harm would it cause? Are
there ways, other than micro-management, to mitigate the risk or the harm?

It seems to me that there are several threats to the quality of any product or service when
managers supervise too closely. A micromanager, like everyone else, has a limited set of
models for the work and the product. When you control things such that there's only one
way of doing things, that limits the ability to find new problems, new perspectives, new
experiments, novel solutions. A manager who is total enmeshed in his employees' work
is probably dedicating less time than he ought to providing resources and clearing
obstacles.

A person being micromanaged becomes solely an extension of the manager's capabilities,
and brings little of his or her own value to the table, yet there is surely value there to be
had. Worse, that person doesn't get to learn from experience. It's really important for
people to be able to try things and fail. Ideally those failures happen in ways that aren't
consequential, so a good manager sets up ways to make the project robust to larger
failures while permitting and even encouraging little failures. Failures are where
information and learning come from. A good manager allows his or her people to
blossom, but that means granting them freedom and responsibility and a little risk.

Measuring and Managing Performance in Organizations by Robert D. Austin provides a
fabulous and rigourously argued discussion of why micro-management is a bad idea.

Q: IMO, the presenter is trying to use testing to counterweigh architecture/design
mistakes, a compensating control, which is hardly an adequate respose.

A: I appreciate the idealism that seems to be at the core of this comment. I'd love to be
confident that mistakes never happened, and I'm aware that there are certainly many
things that we could do to reduce or avoid mistakes. However, the idea that testing is a
compensating control is, in my view, a misperception of what testing is, and does. To
me, testing itself isn't a control at all. Instead, it's a questioning process, designed to
identify whether there are problems. That's something that's worthwhile, even after we've
applied what we think are our very best efforts. To put it another way, testing isn't a
compensating control; it's a way of determining whether—and where, perhaps—we need
some kind of control, compensating or otherwise.

Testing is the means by which we seek problems in the development work that's just been
done. In that sense, testing is as much a part of development work as programming is.
The search for problems can happen after a huge amount of development work, or after
each atomic unit of work. The Agile development people have some good ideas, I think,
in suggesting that we develop and test in very tight loops, right at the unit level. Many
suggest that we work most quickly by devising one or more tests before we develop the
code that is intended to pass those tests. Then we develop the code such that it passes the
test(s), and we also check to see that the code continues to pass all the tests that have
passed before. The wisest Agile people that I know also recommend that we explore the
product after that, looking for problems that our earlier tests and checks have missed. I
agree with that approach.

In other, more traditional models of development, I observe that sometimes people
confuse testing with fixing. Companies often break work into a long "development
phase" and a long "testing phase". I don't agree with this separation, especially since the
"testing phase" lumps testing and fixing together. In the "testing phase", the testing takes
relatively little time; it's the fixing that takes the majority of the time. So, perhaps the
statement above refers to the idea of fixing as a compensating control on architecture or
design mistakes. That seems wasteful to me too, although as I've said above, we do learn
mostly from failures. If there were more testing—by which I mean more review, more
thinking critically about the product—in the earlier stages, then perhaps we wouldn't have
to deal with so many problems later. So if that's what the comment is leaning towards, I
agree.

Q: QA is a subfunction of the governance. It's about doing the right thing, where QC (aka
testing) is doing it right. As such, the subject of the presentation is somewhat misleading,
in my very subjective opinion. Any comment?

A: You and I appear to have different ideas about quality assurance and quality control.
I'm aware that some people see quality assurance as a form of governance. I suppose one
could think that way. I prefer to think of quality assurance in terms of two forms of
management—self-management on the part of the individual, as he or she does his or her
work; and organizational or project-level management, as done by people who manage
the work overall. Perhaps the latter a kind of "governance" function, but I prefer to think
of it more simply as management, if it comes with actual management authority. (If it
doesn't come with actual management authority, then the "quality assurance" moniker
and role make me feel uncomfortable. On the cop shows, no one likes the Internal
Affairs department.)

I think of testing neither as quality assurance nor as quality control, since to me testing is
a questioning process, an information-gathering process. The search for information can
neither assure nor control quality. The search and the discovery can only inform. It's
what people think and what people do with the information that assures or controls
quality.

So: misleading? Perhaps, if you enter the discussion with a particular model, and if we
don't share that model. I'm sorry if you felt misled. On the other hand, we could choose
to think of our differences as potential viable alternatives, and we could share those,
maybe coming up with something better than either one alone. At least one of us will
learn something!

Q: Generally we find that the people doing user acceptance testing are the business
analysts who do the requirements definition. Any comment on roles & responsibilities?

A: If you're going to ask people to do anything, I think it behooves you to help them get
good at it. So when business analysts are asked to do testing, I think it behooves the
people asking to provide plenty of support for doing testing really well. That might

include bringing in an expert tester to work alongside them, providing training, providing
books, sending people to classes or conferences. Airlines can't put a doctor on every
plane, so flight attendants end up having to do first aid and CPR sometimes. But airlines
don't want flight attendants to do CPR incompetently. It's important work, so they train
them and retrain them.

There's nothing wrong with BA's doing testing, but there's a good reason to have more
people doing it. People tend not to be good at seeing problems in their own work, so a
BA's testing might mirror any problems with the BA's initial analysis. So James Bach,
Cem Kaner, and I (to name but a few) argue very strongly in terms of diversity on a
testing team, in all kinds of dimensions: speciality, educational background, domain
experience, programming knowledge, other technical skills, critical thinking, systems
thinking... People from different cultures and ethnic backgrounds see things differently.
If we're looking for problems in globally distributed products—in any products—I think
that's a good thing.

Q: Can you give some examples of inquiry vs decision metrics?
A: In general, an inquiry metric is one that is designed and used to prompt questions. A
control metric is one on which we base a decision or an evaluation. I gave an example
towards the end of the presentation. There are two ways that you might collect data on
the number of calls handled by technical support people.

If you set a goal for each person to handle 28 calls a day, they will feel pressured to do
that, even if they don't admit it, and even if they don't do it consciously. Some will infer
that more is better. Some who are capable of handling calls quickly might ease up,
managing themselves down to the number.

If you decide instead to collect data to prompt questions, there will be a different
outcome. The first thing is that you'll probably observe outliers, one way or the other.
Does the person who handles a large number of calls have techniques and approaches
from which other people might benefit? Does the person who is handling few calls do so
because she has an affinity for tough problems, and happily takes them on for the other
team members, allowing them to get higher call counts? Or is she lagging, in need of
training? Take the measurement in, and subject it to a number of possible interpretations,
and you'll be less likely to miss important information.

You can choose to put control metrics on a bunch of things at once, but that results in a
kind of quality whack-a-mole: as you add measurements, the things that you're not
measuring but that are nonetheless valuable will suffer. Again, Measuring and Managing
Performance in Organizations by Robert D. Austin analyzes this problem really
thoroughly, and suggests that intrinsic motivation and a basket of qualitative goals are
key. Also see Jerry Weinberg's Quality Software Management series, the whole thing,
but for this issue, especially look at Volume II, First Order Measurement. (Jerry's books
are available as e-books through his Web site, http://www.geraldmweinberg.com. In that
case, the book I've just cited is distributed as two e-books: How to Observe Software
Systems and Responding to Significant Software Events.

Q: There seems to be a digital thought to Testing or QA. Especially in software,
products/services are continuous - should not testing and QA been thought of more as
continous/lifecycle activity?

A: I think so. Binary thinking is pretty limiting. I like the analogy to discrete and
continuous math! The way I see the world, none of software, or testing, or quality is
decided by bits, but by continuous waves of different quality criteria sloshing around in a
big, noisy ocean.

