
1

Why Didn’t You
Find That Bug?

Michael Bolton
DevelopSense

http://www.developsense.com
michael@developsense.com

But first…

…a few Burning Issues.

When Agile testing
focuses on confirmation,
it becomes old testing wine

in new Agile bottles.

Acceptance tests are misnamed.
You don't know you're done
when they pass; you know

you're NOT done when they fail.
They should be called "rejection

checks".

Testing never ends; it only stops.
So it's folly to think that ALL testing

for a given amount of work
can fit into that work's iteration.

Testing quality into a product is
like measuring height into a

basketball player.

2

When managers ask, “When
are we going to be finished
testing?” they really mean
“When are we going to be

finished developing?”
So why ask the testers?

Waiters don't tell the chef
when food is ready to serve.
Why are testers asked to tell
managers when products are

ready to ship?

One purpose for testing is to
move known unknowns toward
the known; unknown unknowns

toward known unknowns.

3

Testers are not in the
confidence-building business.

Testers are in the unwarranted-
confidence demolition business.

Counting yesterday’s passing test cases
is as relevant to today’s project as
yesterday’s good weather report

is to today’s picnic.

The “expert” stage of the
Dreyfus Model of Knowledge Acquisition

“transcends reliance on
rules, guidelines, and maxims”.

So, presumably, if you’re a real expert,
you’ll ignore the Dreyfus Model.

“Works as designed” means
exactly the same thing as

“Doesn’t work…as designed.”

When a manager asks “Why
didn’t you find that bug earlier?”

ask “Why didn’t you remind me to
find it earlier?”

Managers often ask the testers…

4

Some answers…

• because we didn’t know where it was
• because the people who put it in didn’t

know where it was either
• because it was well hidden
• because the people who put it in did a

bunch of things to make sure it was hidden
• because of the illusion that letting it stay

hidden would save time

How to Win at Hide and Seek

• Play it in a tidy room
• Keep the count short
• Choose your opponent wisely

Another answer… Is Regression Your Biggest Risk?
• Before the Agile Manifesto was declared, a group of

experienced test managers reported that regression
problems ran from 6-15% of discovered problems

• In Agile shops, we now (supposedly) have
– TDD
– unit tests
– pairing
– configuration management
– build and version control
– continuous integration

• Is regression a serious risk?
• If so, can testing (whether automated or not) fix it?
• Is regression really a symptom of problems elsewhere?

Regression Problems Are Symptoms

• If you see a lot of fires in the neighbourhood
– any given fire is not your biggest problem
– you might want to notice construction problems or arsonists

• If you see a consistent pattern of regression
– the failing tests are not your biggest problem
– you might want to note a favourable environment for regression

Another answer…

5

One Way to Model Coverage:
Product Elements and Quality Criteria)

Capability
Reliability
Usability
Security

Scalability

Performance
Installability

Compatibility
Supportability

Testability

Maintainability
Portability

Localizability

• Time
• Operations
• Platform
• Data
• Function
• Structure

Another answer…

Test Session Effectiveness
• A “perfectly effective” testing session is one

entirely dedicated to test design, test
execution, and learning
– a “perfect” session is the exception, not the rule

• Test design and execution tend to contribute to
test coverage
– varied tests tend to provide more coverage than

repeated tests
• Setup, bug investigation, and reporting take

time away from test design and execution

Modeling Test Effort
• Suppose that some burst of test activity takes two

minutes
– this is a highly arbitrary and artificial

assumption—that is, it’s wrong, but we use it to
model an issue and make a point

• Suppose also that it takes an extra eight minutes to
investigate and report a bug that we found with a test
– another stupid, sweeping generalization in service

of the point
• In a 90-minute session, we can run 45 feature tests—

as long as we don’t find any bugs

How Do We Spend Time?
(assuming all tests below are good tests)

C (bad)
B (okay)
A (good)

Module

80 minutes (8 bugs, 8 tests)
10 minutes (1 bug, 1 test)
0 minutes (no bugs found)

Bug reporting/investigation
(time spent on tests that find bugs)

1310 minutes (5 tests)
4180 minutes (40 tests)
4590 minutes (45 tests)

Number
of tests

Test design and execution
(time spent on tests that find no bugs)

Investigating and reporting bugs means….

or…

…or both.

• In the first instance, our coverage is great—but if we’re being assessed on the number of bugs
we’re finding, we look bad.
• In the second instance, coverage looks good, and we found a bug, too.
• In the third instance, we look good because we’re finding and reporting lots of bugs—but our
coverage is suffering severely. A system that rewards us or increases confidence based on the
number of bugs we find might mislead us into believing that our product is well tested.

What Happens The Next Day?
(assume 6 minutes per bug fix verification)

5
38
45

New tests
today

18
79
90

Total over
two days

40 min (4 new bugs)
10 min (1 new bug)
0

Bug reporting and
investigation today

48 min
6 min
0 min

Fix
verifications

2 min (1 test)
74 min (37 tests)
45

Test design and
execution today

Finding bugs today means….

or…

…or both.

…which means….

•…and note the optimistic assumption that all of our fixed verifications worked, and that we found
no new bugs while running them. Has this ever happened for you?

6

With a more buggy product
• More time is spent on bug investigation and

reporting
• More time is spent on fix verification
• Less time is available for coverage

With a less buggy product…
(that is, one that has had some level of testing already)

• We’ve got some bugs out of the way already
• Those bugs won’t require investigation and reporting
• Those bugs won’t block our ability to test more deeply

Test Early and Often!
• Recurrent themes in agile development (note the small A)

– test-first programming
– automated unit tests, builds, and continuous integration
– testability hooks in the code
– lots of customer involvement

• The ideas are
– to increase developers’ confidence in and commitment to

what they’re providing (“at least it does this”)
– to allow rapid feedback when it doesn’t do this
– to permit robust refactoring
– to increase test coverage and/or reduce testing time

Testing Is Questioning
• Note that I just gave you a compelling-looking table,

using simple measures, but notice that we still don’t
really know anything about…
– the quality and relevance of the tests
– the quality and relevance of the bug reports
– the skill of the testers in finding and reporting bugs
– the complexity of the respective modules
– luck

…but if we ask better questions, instead of
letting data make our decisions,

we’re more likely to learn important things.

• Developer tests at the unit level
– use TDD, test-first, automated unit tests, reviews

and inspections, step through code in the
debugger—whatever increases your own
confidence that the code does what you think it
does

We Testers Humbly Request…
(from the developers)

7

We Testers Humbly Request…
(from the whole team)

• Focus on testability
– log files
– scriptable interfaces
– real-time monitoring capabilities
– installability and configurability
– test tools, and help building our own
– access to “live oracles” and other forms of information

Acknowledgements

• James Bach
• Dale Emery
• James Lyndsay
• Cem Kaner

Want to know more?
Some other resources

• “How Much Is Enough?” (Better Software column)
– http://www.developsense.com/publications.html

• Why Is Testing Taking So Long?
– http://www.developsense.com/blog/archive/2009_11_24_archive.html
– http://www.developsense.com/blog/archive/2009_11_25_archive.html

• Testing vs. Checking
– http://www.developsense.com/blog/archive/2009_08_29_archive.html,

and linked posts
• Disposable Time

– http://www.developsense.com/blog/archive/2010_01_17_archive.html

Michael Bolton
DevelopSense

http://www.developsense.com
michael@developsense.com

