
1

1

Rapid Testing

Rapid testing is a mind-set
and a skill-set of testing

focused on how to do testing
more quickly,

less expensively,
with excellent results.

This is a general testing
methodology. It adapts to

any kind of project or product.

2

Tests

Project
Environment

Product
Elements

Quality
Criteria

Perceived
Quality

A Heuristic Test Strategy Model

3

Project
Environment

Tests

Product
Elements

Quality
Criteria

Perceived
Quality

A Heuristic Test Strategy Model

4

Rapid testing may
not be exhaustive,
but it is thorough
enough and quick
enough. It’s less work
than ponderous
testing. It might be
less work than
slapdash testing.

It fulfills the mission
of testing.

How does Rapid Testing compare
with other kinds of testing?

Management likes to talk
about exhaustive testing, but
they don’t want to fund it and
they don’t know how to do it.

You can always test
quickly...

But it might be poor
testing.

When testing is turned into an
elaborate set of rote tasks,

it becomes ponderous without
really being thorough.

M
or

e
W

or
k

&

Ti
m

e
(C

os
t)

Better Thinking & Better Testing
(Value)

Slapdash
Much faster, cheaper,

and easier

Ponderous
Slow, expensive,

and easier

Rapid
Faster, less expensive,

still challenging

Exhaustive
Slow, very expensive,

and difficult

5

Excellent Rapid Technical Work
Begins with You

When the ball comes to you…
Do you know you have the ball?

Can you receive the pass?

Do you know what your
role and mission is?

Do you know where
your teammates are?

Are you ready to act, right now?

Can you let your teammates help you?

Do you know your options?

Is your equipment ready?

Can you read the
situation on the field?

Are you aware of the
criticality of the situation?

6

• Rapid test teams are about diverse talents cooperating
• We call this the elliptical team, as opposed to the team of perfect

circles.
• Some important dimensions to vary:

• Technical skill
• Domain expertise
• Temperament (e.g. introvert vs. extrovert)
• Testing experience
• Project experience
• Industry experience
• Product knowledge
• Educational background
• Writing skill

• Diversity makes exploration far more powerful
• Your team is more powerful because of your unique individual

contribution

…but you don’t have to be great
at everything.

2

No, not the database Not the database

But wait… WE CAN’T.

Certainty isn’t
available.

But we DO have heuristics

Heuristics are fallible, “fast and frugal” methods of
solving problems, making decisions, or

accomplishing tasks.

“The engineering method is
the use of heuristics

to cause the best change
in a poorly understood situation
within the available resources.”

Billy Vaughan Koen
Discussion of the Method

Heuristics: Generating Solutions Quickly

• adjective:
“serving to discover or learn.”

• noun:

“Heuristic reasoning is not regarded as final and strict
but as provisional and plausible only, whose purpose

is to discover the solution to the present problem.”
- George Polya, How to Solve It

“A fallible method
for solving a problem or

making a decision.”

3

Oracles

An oracle is a heuristic principle or mechanism
by which you recognize a problem.

“...it appeared at least once to meet some
requirement to some degree.”

“It works!”

“...uh, when I ran it.”
“...on my machine.”

Without an oracle you cannot recognize a problem

If you think you see a problem,
you must be using an oracle…

so what is it?

Oracles Link
Observations with Problems

History

If a product is inconsistent with previous versions of itself,
we suspect that there might be a problem.

Okay,
so how the #&@
do I print now?

Image

If a product is inconsistent with an image that
the company wants to project, we suspect a problem.

Comparable Products

WordPad Word
When a product seems inconsistent with a comparable

product, we suspect that there might be a problem.

Claims

New! Supports Mac OS!

When a product is inconsistent with claims that important
people make about it, we suspect a problem.

4

User Expectations

When a product is inconsistent with expectations that a
reasonable user might have, we suspect a problem.

Purpose

When a product is inconsistent with its designers’ explicit
or implicit purposes, we suspect a problem.

Product

When a product is inconsistent internally—as when it
contradicts itself—we suspect a problem.

Statutes and Standards

When a product is inconsistent with laws or widely
accepted standards, we suspect a problem.

the present version of the system is consistent with past
versions of itself.
the system is consistent with an image that the organization
wants to project.
the system is consistent with comparable systems.
the system is consistent with what important people say it’s
supposed to be.
the system is consistent with what users seem to want.
each element of the system is consistent with comparable
elements in the same system.
the system is consistent with implicit and explicit purposes.
the system is consistent with relevant laws or standards.

We like consistency when…

We like it when the system is not consistent
with patterns of familiar problems.

unless it’s a problem.

5

But...

• All of the consistency oracles are heuristic.

Consistency heuristics rely on the quality of your
models of the product and its context.

An oracle doesn’t tell you that there IS a problem.
An oracle tells you that you might be seeing a problem.

Rely solely on documented, anticipated sources of
oracles, and your testing will likely be slower and weaker.

Train your mind in patterns of oracles and your testing
will likely be faster and your coverage better.

All Oracles Are Heuristic

How Do I Keep Track? HICCUPPS!

• History
• Image
• Comparable Products
• Claims
• User Expectations
• Purpose
• Product
• Statutes

…plus for “Familiar Problems”, add that inconsistent F!

Remember…

For skilled testers,
good testing isn’t just about

pass vs. fail.

For skilled testers,
testing is about

problem vs. no problem.

Coverage is “how much of the product we have tested.”

What IS Coverage?

It’s the extent to which we have
traveled over some map of the product.

Models

• A model is a heuristic idea, activity, or object…
such as an idea in your mind, a diagram, a list of words, a spreadsheet,
a person, a toy, an equation, a demonstration, or a program

such as something complex that you need to work with or study

- A map is a model that helps to navigate across a terrain.
- 2+2=4 is a model for adding two apples to a basket that already has two apples.
- Atmospheric models help predict where hurricanes will go.
- A fashion model helps understand how clothing would look on actual humans.
- Your beliefs about what you test are a model of what you test.

• …that represents (literally, re-presents)
another idea, activity, or object…

• …whereby understanding something about
the model may help you to understand or
manipulate the thing that it represents.

6

A Map of the Toronto Subway Here’s Another One

A Map of Toronto’s Cultural Facilities So You Want Your Sidewalk Plowed?

A Bike Ride? What Is Covered Incidentally?

7

Different Maps Show Different Things

• The information that we care about may be
incidental to the “purpose” of the map

There are as many kinds of test coverage as
there are ways to model the system.

One Way to Model Coverage:
Product Elements (with Quality Criteria)

Capability
Reliability
Usability
Security

Scalability

Performance
Installability

Compatibility
Supportability

Testability

Maintainability
Portability

Localizability

• Time
• Operations
• Platform
• Data
• Function
• Structure

40

To test a very simple product meticulously,
part of a complex product meticulously,
or to maximize test integrity…

1. Start the test from a known (clean) state.
2. Prefer simple, deterministic actions.
3. Trace test steps to a specified model.
4. Follow established and consistent lab procedures.
5. Make specific predictions, observations and records.
6. Make it easy to reproduce (automation may help).

41

To find unexpected problems,
elusive problems that occur in sustained field use,
or more problems quickly in a complex product…

1. Start from different states (not necessarily clean).
2. Prefer complex, challenging actions.
3. Generate tests from a variety of models.
4. Question your lab procedures and tools.
5. Try to see everything with open expectations.
6. Make the test hard to pass, instead of easy to reproduce.

That’s a
PowerPoint

bug!

General Focusing Heuristics

• use test-first approach or unit testing for better code
coverage

• work from prepared test coverage outlines and risk lists
• use diagrams, state models, and the like, and cover

them
• apply specific test techniques to address particular

coverage areas
• make careful observations and match to expectations

To do this more rapidly, make preparation and artifacts fast and frugal:
leverage existing materials and avoid repeating yourself.

Emphasize doing; relax planning. You’ll make discoveries along the way!

8

General Defocusing Heuristics

• diversify your models; intentional coverage in one area can
lead to unintentional coverage in other areas—this is a
Good Thing

• diversify your test techniques
• be alert to problems other than the ones that you’re

actively looking for
• welcome and embrace distraction
• do some testing that is not oriented towards a specific risk
• use high-volume, randomized automated tests

Extent of Coverage

• Smoke and sanity
• Can this thing even be tested at all?

• Common, core, and critical
• Can this thing do the things it must do?
• Does it handle happy paths and regular input?
• Can it work?

• Complex, harsh, extreme and exceptional
• Will this thing handle challenging tests, complex data

flows, and malformed input, etc.?
• Will it work?

What About Quantifying Coverage Overall?

• A nice idea, but we don’t know how to do it in a
way that is consistent with basic measurement
theory

• If we describe coverage by counting test cases, we’re
committing reification error.

• If we use percentages to quantify coverage, we need
to establish what 100% looks like.

• But we might do that with respect to some specific models.

• Complex systems may display emergent behaviour.

How Might We Organize,
Record, and Report Coverage?

• automated tools (e.g. profilers, coverage tools)
• annotated diagrams (as shown in earlier slides)
• coverage matrices
• bug taxonomies
• Michael Hunter’s You Are Not Done Yet list
• James Bach’s Heuristic Test Strategy Model

• described at www.satisfice.com
• articles about it at www.developsense.com

• Mike Kelly’s MCOASTER model
• coverage outlines and risk lists
• session-based test management

• http://www.satisfice.com/sbtm

47

What Does Rapid Testing Look Like?
Concise Documentation Minimizes Waste

Risk ModelCoverage Model Test Strategy
Reference

Risk CatalogTesting Heuristics
General

Project-

Specific
Status

Dashboard
Schedule BugsIssues

Rapid Testing Documentation

• Recognize
• a requirements document is not the requirements
• a test plan document is not a test plan
• a test script is not a test
• doing, rather than planning, produces results

• Determine where your documentation is on the
continuum: product or tool?
• Keep your tools sharp and lightweight
• Obtain consensus from others as to what’s necessary and

what’s excess in products
• Ask whether reporting test results takes priority over

obtaining test results
• note that in some contexts, it might

• Eliminate unnecessary clerical work

9

What IS Exploratory Testing?

• Simultaneous test design, test
execution, and learning.

• James Bach, 1995

But maybe it would be a good idea to underscore
why that’s important…

What IS Exploratory Testing?
• I follow (and to some degree contributed to) Kaner’s definition,

which was refined over several peer conferences through 2007:

Exploratory software testing is…

• a style of software testing
• that emphasizes the personal freedom and responsibility
• of the individual tester
• to continually optimize the value of his or her work
• by treating test design, test execution, test result

interpretation, and test-related learning
• as mutually supportive activities
• that run in parallel
• throughout the project.

See Kaner, “Exploratory Testing After 23 Years”,
www.kaner.com/pdfs/ETat23.pdf

So maybe it would
be a good idea to
keep it brief most

of the time…

Why Exploratory Approaches?

• Systems are far
more than
collections of
functions

• Systems
typically depend
upon and
interact with
many external
systems

Why Exploratory Approaches?

• Systems are too
complex for
individuals to
comprehend
and describe

• Products evolve
rapidly in ways
that cannot be
anticipated

In the future, developers will likely do more verification and validation at
the unit level than they have done before.

Testers must explore, discover, investigate, and learn about the system.

Why Exploratory Approaches?

• Developers are using tools and frameworks
that make programming more productive, but
that may manifest more emergent behaviour.

• Developers are increasingly adopting unit
testing and test-driven development.

• The traditional focus is on verification,
validation, and confirmation.

The new focus must be on exploration,
discovery, investigation, and learning.

Why Exploratory Approaches?

• We don’t have time to waste
• preparing wastefully elaborate written plans
• for complex products
• built from many parts
• and interacting with many systems
• (many of which we don’t understand…
• or control)
• where everything is changing over time
• and there’s so much learning to be done
• and the result, not the plan, is paramount.

10

Exploratory Testing

• IS NOT “random testing” (or
sloppy, or slapdash testing)

• IS NOT “unstructured testing”
• IS NOT procedurally structured
• IS NOT unteachable
• IS NOT unmanageable
• IS NOT scripted
• IS NOT a technique

• IS “ad hoc”, in the dictionary
sense, “to the purpose”

• IS structured and rigorous
• IS cognitively structured
• IS highly teachable
• IS highly manageable
• IS chartered
• IS an approach

The way we practice and teach it, exploratory testing…

Contrasting Approaches

Scripted Testing
• Is directed from elsewhere
• Is determined in advance
• Is about confirmation
• Is about controlling tests
• Emphasizes predictability
• Emphasizes decidability
• Like making a speech
• Like playing from a score

Exploratory Testing
• Is directed from within
• Is determined in the moment
• Is about investigation
• Is about improving test design
• Emphasizes adaptability
• Emphasizes learning
• Like having a conversation
• Like playing in a jam session

Exploratory Testing IS Structured

• Exploratory testing, as we teach it, is a structured process conducted by
a skilled tester, or by lesser skilled testers or users working under
supervision.

• The structure of ET comes from many sources:
• Test design heuristics
• Chartering
• Time boxing
• Perceived product risks
• The nature of specific tests
• The structure of the product being tested
• The process of learning the product
• Development activities
• Constraints and resources afforded by the project
• The skills, talents, and interests of the tester
• The overall mission of testing

In other words,
it’s not “random”,

but systematic.

Not procedurally
structured, but

cognitively structured.

58

ET is a Structured Process

In excellent exploratory testing, one structure
tends to dominate all the others:

Exploratory testers construct a compelling
story of their testing. It is this story that

gives ET a backbone.

59

To test is to compose, edit, narrate,
and justify two stories.

You must tell a story about the product…

…about how it failed, and how it might fail...
…in ways that matter to your various clients.

But you must also tell a story about your testing…

…how you configured, operated and observed it…
…about what you haven’t tested, yet…
…or won’t test, at all…
…and about why what you did was good enough.

The Process of Test Design

Analysis Experiment Knowledge

Produces Informs

- Configure
- Operate
- Observe
- Evaluate

- Product Story
- Technical Knowledge
- Domain Knowledge
- General Knowledge

Test
Procedure

Question

Answer

Investigate
bugs

Informs

Testing Story

Produces

- Test Plan/Report
- Work Products
- Status

- Risk
- Coverage
- Oracles
- Resources/Constraints
- Value/Cost
- Bugs

11

How to Start?
Pick a Useful, Fun, or Easy Starting Point

What do I need to produce for my client?
What has already been done?

What kind of testing
am I good at?

What obstacles threaten
my success?

What do I know?
What do I need to know?

Do I have a product?
What can I do with

the product?

62

• Happy Path
• Tour the Product

• Sample Data
• Variables
• Files
• Complexity
• Menus & Windows
• Keyboard & Mouse

A quick test is a cheap test that has some value
but requires little preparation, knowledge,

or time to perform.

• Interruptions
• Undermining
• Adjustments
• Dog Piling
• Continuous Use
• Feature Interactions
• Click on Help

Cost as a Simplifying Factor
Try quick tests as well as careful tests

63

• Input Constraint Attack
• Click Frenzy
• Shoe Test
• Blink Test
• Error Message Hangover

A quick test is a cheap test that has some value
but requires little preparation, knowledge,

or time to perform.

• Resource Starvation
• Multiple Instances
• Crazy Configs
• Cheap Tools

Cost as a Simplifying Factor
Try quick tests as well as careful tests

Touring the Product:
Mike Kelly’s FCC CUTS VIDS

• Feature tour
• Complexity tour
• Claims tour
• Configuration tour
• User tour
• Testability tour

• Scenario tour
• Variability tour
• Interoperability tour
• Data tour
• Structure tour

65

The Themes of Rapid Testing

• Put the tester's mind at the center of testing.
• Learn to deal with complexity and ambiguity.
• Learn to tell a compelling testing story.
• Develop testing skills through practice, not just talk.
• Use heuristics to guide and structure your process.
• Be a service to the project community, not an

obstacle.
• Consider cost vs. value in all your testing activity.
• Diversify your team and your tactics.
• Dynamically manage the focus of your work.
• Your context should drive your choices, both of

which evolve over time.
66

Project
Environment

Tests

Product
Elements

Quality
Criteria

Perceived
Quality

A Heuristic Test Strategy Model

