
1

Exploratory Testing

Michael Bolton
DevelopSense

http://www.developsense.com
September 2009

2

What IS Exploratory Testing?

• Simultaneous test design, test
execution, and learning.

• James Bach, 1995

But maybe it would be a good idea to underscore
why that’s important…

3

What IS Exploratory Testing?

•Simultaneous test design, test execution,
and learning, with an emphasis on learning.

•Cem Kaner, 2005

But maybe it would be a good idea to be
really explicit about what goes on…

4

What IS Exploratory Testing?
• I follow (and to some degree contributed to) Kaner’s definition,

which was refined over several peer conferences through 2007:

Exploratory software testing is…

• a style of software testing
• that emphasizes the personal freedom and responsibility
• of the individual tester
• to continually optimize the value of his or her work
• by treating test design, test execution, test result

interpretation, and test-related learning
• as mutually supportive activities
• that run in parallel
• throughout the project.

See Kaner, “Exploratory Testing After 23 Years”,
www.kaner.com/pdfs/ETat23.pdf

So maybe it would
be a good idea to
keep it brief most

of the time…

5

Testing Isn’t Just Checking

• Checking is a process of confirming and
verifying existing beliefs
• Checking can (and I argue, largely should) be

done mechanically
• It is a non-sapient process I’m very fast…

but I’m slow.

See http://www.developsense.com/2009/08/testing-vs-checking.html

6

What IS Checking?

• A check has three attributes
• It requires an observation
• The observation is linked to a decision rule
• The observation and the rule can be applied

7

Oh no! What Is Sapience?

• A sapient activity is one that requires a
thinking human to perform

• A non-sapient activity can be performed by
• a machine (quickly and precisely)
• or by a human that has decided NOT to think

(slowly and fallibly)
• looks like machines win there, right?

• BUT our job is not merely to test for
repeatability, but also for adaptability and
value

8

Testing IS Exploring

• Testing as I see it is all about exploration,
discovery, investigation, and learning
• Testing can be assisted by machines, but can’t

be done by machines alone
• It is a sapient process I can’t do that,

but I can help you
act on your ideas.

See http://www.developsense.com/2009/08/testing-vs-checking.html

9

Automation Can’t…

anticipateempathize
judge

recognize
appreciate

predict

teach

strategize

learn
charter

work around a problem
make conscious decisions

collaborate resource
model

invent

get frustrated

become resigned
assess
evaluate

project

question

refine

investigate speculate
suggest

contextualize elaborate

reframe

refocus

troubleshoot THINK

recognize new risks

FEEL

10

Exploratory Testing

• IS NOT “random testing” (or
sloppy, or slapdash testing)

• IS NOT “unstructured testing”
• IS NOT procedurally structured
• IS NOT unteachable
• IS NOT unmanageable
• IS NOT scripted
• IS NOT a technique

• IS “ad hoc”, in the dictionary
sense, “to the purpose”

• IS structured and rigorous
• IS cognitively structured
• IS highly teachable
• IS highly manageable
• IS chartered
• IS an approach

The way we practice and teach it, exploratory testing…

11

Contrasting Approaches

Scripted Testing
• Is directed from elsewhere
• Is determined in advance
• Is about confirmation
• Is about controlling tests
• Emphasizes predictability
• Emphasizes decidability
• Like making a speech
• Like playing from a score

Exploratory Testing
• Is directed from within
• Is determined in the moment
• Is about investigation
• Is about improving test design
• Emphasizes adaptability
• Emphasizes learning
• Like having a conversation
• Like playing in a jam session

12

To Learn Excellent Exploratory Testing
We Must Learn To Test

• Learning how to test in an exploratory way can be challenging, because:

• WHEREAS…
• Almost nobody enjoys reviewing written test procedures.
• Almost nobody knows how to evaluate the quality of written test

procedures.
• Almost every manager seems to think that written tests are Good

Things.
• THEREFORE

• Writing awful test procedures won’t get us fired. Some companies will
even reward us for the poor quality of our test procedures.

• and
• That means there is little pressure on us to become excellent testers.

13

Exploratory Testing IS Structured

• Exploratory testing, as we teach it, is a structured process conducted by
a skilled tester, or by lesser skilled testers or users working under
supervision.

• The structure of ET comes from many sources:
• Test design heuristics
• Chartering
• Time boxing
• Perceived product risks
• The nature of specific tests
• The structure of the product being tested
• The process of learning the product
• Development activities
• Constraints and resources afforded by the project
• The skills, talents, and interests of the tester
• The overall mission of testing

In other words,
it’s not “random”,

but systematic.

Not procedurally
structured, but

cognitively structured.

14

Oracles

An oracle is
a heuristic
principle
or mechanism
by which
someone
might recognize
a problem.

(usually works, might fail)

(but not decide conclusively)
Bug (n): Something that

bugs someone who matters

15

All Test Oracles Are Heuristic

• Oracles (and heuristics) are fallible and context-dependent.
• Oracles can be contradicted by other oracles.
• Multiple oracles may increase our confidence, but even

combinations of oracles are fallible.
• There is no single oracle that can tell us whether a program

(or feature) is working correctly at all times and in all
circumstances.

• Recognizing a different problem usually requires a different
oracle.

• A tester doesn’t need to be aware of an oracle in advance of
the observation, unless the test is designed to be run by
rote—that is, unless it’s a check.

• Any time you see a problem, you must be using an oracle…
so what is it?

16

Consistency (“this agrees with that”)
an important theme in oracles

Consistency heuristics rely on the quality of your
models of the product and its context.

Comparable Products
History

User Expectations

Claims

StandardsProductPurpose

Image

17

Coverage Isn’t Just Code Coverage

There are as many kinds of coverage
as there are ways to model the product.

• Time

• Platform
• Operations

• Data
• Functional
• Structure

Test coverage is the amount of the
system space that has been tested.

Capability
Reliability
Usability
Security

Scalability

Performance
Installability
Compatibility
Supportability

Testability

Maintainability
Portability

Localizability

18

18

• Happy Path
• Tour the Product

• Sample Data
• Variables
• Files
• Complexity
• Menus & Windows
• Keyboard & Mouse

A quick test is a cheap test that has some value
but requires little preparation, knowledge,

or time to perform.

• Interruptions
• Undermining
• Adjustments
• Dog Piling
• Continuous Use
• Feature Interactions
• Click on Help

Cost as a Simplifying Factor
Try quick tests as well as careful tests

Happy Path: Use the product in the most simple, expected, straightforward way, just as the most optimistic
programmer might imagine users to behave. Perform a task, from start to finish, that an end-user might be
expected to do. Look for anything that might confuse, delay, or irritate a reasonable person.
Documentation Tour: Look in the online help or user manual and find some instructions about how to perform
some interesting activity. Do those actions. Improvise from them. If your product has a tutorial, follow it. You
may expose a problem in the product or in the documentation; either way, you’ve found something useful. Even
if you don’t expose a problem, you’ll still be learning about the product.
Sample Data Tour: Employ any sample data you can, and all that you can—the more complex or extreme the
better. Use zeroes where large numbers are expected; use negative numbers where positive numbers are
expected; use huge numbers where modestly-sized ones are expected; and use letters in every place that’s
supposed to handle numbers. Change the units or formats in which data can be entered. Challenge the
assumption that the programmers have thought to reject inappropriate data.
Variables Tour: Tour a product looking for anything that is variable and vary it. Vary it as far as possible, in
every dimension possible. Identifying and exploring variations is part of the basic structure of my testing when I
first encounter a product.
Complexity Tour: Tour a product looking for the most complex features and using challenging data sets. Look
for nooks and crowds where bugs can hide.
File Tour: Have a look at the folder where the program's .EXE file is found. Check out the directory structure,
including subs. Look for READMEs, help files, log files, installation scripts, .cfg, .ini, .rc files. Look at the names
of .DLLs, and extrapolate on the functions that they might contain or the ways in which their absence might
undermine the application.
Menus and Windows Tour: Tour a product looking for all the menus (main and context menus), menu items,
windows, toolbars, icons, and other controls.
Keyboard and Mouse Tour: Tour a product looking for all the things you can do with a keyboard and mouse.
Run through all of the keys on the keyboard. Hit all the F-keys. Hit Enter, Tab, Escape, Backspace. Run
through the alphabet in order. Combine each key with Shift, Ctrl, and Alt. Also, click on everything.
Interruptions: Start activities and stop them in the middle. Stop them at awkward times. Perform stoppages
using cancel buttons, O/S level interrupts (ctrl-alt-delete or task manager), arrange for other programs to interrupt
(such as screensavers or virus checkers). Also try suspending an activity and returning later.
Undermining: Start using a function when the system is in an appropriate state, then change the state part way
through (for instance, delete a file while it is being edited, eject a disk, pull net cables or power cords) to an
inappropriate state. This is similar to interruption, except you are expecting the function to interrupt itself by
detecting that it no longer can proceed safely.
Adjustments: Set some parameter to a certain value, then, at any later time, reset that value to something else
without resetting or recreating the containing document or data structure.
Dog Piling: Get more processes going at once; more states existing concurrently. Nested dialog boxes and non-
modal dialogs provide opportunities to do this.
Continuous Use: While testing, do not reset the system. Leave windows and files open. Let disk and memory
usage mount. You're hoping that the system ties itself in knots over time.

19

19

• Input Constraint Attack
• Click Frenzy
• Shoe Test
• Blink Test
• Error Message Hangover

A quick test is a cheap test that has some value
but requires little preparation, knowledge,

or time to perform.

Resource Starvation
Multiple Instances
Crazy Configs
Cheap Tools

Cost as a Simplifying Factor
Try quick tests as well as careful tests

Input Constraint Attack: Discover sources of input and attempt to violate constraints on that input. For instance,
use a geometrically expanding string in a field. Keep doubling its length until the product crashes. Use special
characters. Inject noise of any kind into a system and see what happens. Use Satisfice’s PerlClip utility to create
strings of arbitrary length and content; use PerlClip’s counterstring feature to create a string that tells you its own
length so that you can see where an application cuts off input.
Click Frenzy: Ever notice how a cat or a kid can crash a system with ease? Testing is more than "banging on
the keyboard", but that phrase wasn't coined for nothing. Try banging on the keyboard. Try clicking everywhere. I
broke into a touchscreen system once by poking every square centimeter of every screen until I found a secret
button.
Shoe Test: This is any test consistent with placing a shoe on the keyboard. Basically, it means using auto-repeat
on the keyboard for a very cheap stress test. Look for dialog boxes so constructed that pressing a key leads to,
say, another dialog box (perhaps an error message) that also has a button connected to the same key that
returns to the first dialog box. That way you can place a shoe (or Coke can, as I often do, but sweeping off a
cowboy boot has a certain drama to it) on the keyboard and walk away. Let the test run for an hour. If there’s a
resource or memory leak, this kind of test will expose it.
Blink Test: Find some aspect of the product that produces huge amounts of data or does some operation very
quickly. For instance, look a long log file or browse database records very quickly. Let the data go by too quickly
to see in detail, but notice trends in length or look or shape of the data. Some bugs are easy to see this way that
are hard to see with detailed analysis. Use Excel’s conditional formatting feature to highlight interesting
distinctions between cells of data.
Error Message Hangover: Make error messages happen and test hard after they are dismissed. Often
developers handle errors poorly.
Resource Starvation: Progressively lower memory, disk space, display resolution, and other resources until the
product collapses, or gracefully (we hope) degrades.
Multiple Instances: Run a lot of instances of the app at the same time. Open the same files. Manipulate them
from different windows.
Crazy Configs: Modify the operating system’s configuration in non-standard or non-default ways either before or
after installing the product. Turn on “high contrast” accessibility mode, or change the localization defaults.
Change the letter of the system hard drive. Consider that the product has configuration options, too—change
them or corrupt them in a way that should trigger an error message or an appropriate default behavior.
Cheap Tools: Learn how to use InCtrl5, Filemon, Regmon, AppVerifier, Perfmon, and Process Explorer, and
Task Manager (all of which are free). Have these tools on a thumb drive and carry it around. Also, carry a digital
camera. I now carry a tiny 3 megapixel camera and a tiny video camera. Both fit into my coat pockets. I use them
to record screen shots and product behaviors. While it’s not cheap, you can usually find Excel on most Windows
systems; use it to create test matrices, tables of test data, charts that display performance results, and so on.
Use the World-Wide Web Consortium’s HTML Validator at http://validator.w3c.org. Pay special attention to tools
that hackers use; these tools can be used for good as well as for evil. Netcat, Burp Proxy, wget, and fuzzer are
but a few examples.

20

20

What Does Rapid ET Look Like?
Concise Documentation Minimizes Waste

Risk ModelCoverage Model Test Strategy
Reference

Risk CatalogTesting Heuristics
General

Project-

Specific
Status

Dashboard
Schedule BugsIssues

Detailed procedural documentation is expensive and largely unnecessary.

Tutorial documentation is also usually unnecessary, but if you do it, then keep
it separate from the working documents.

21

Accountability for Exploratory Testing:
Session-Based Test Management

• Charter
• A clear, concise mission for a test

session

• Time Box
• 90-minutes (+/- 45)

• Reviewable Results
• a session sheet—a test report whose

raw data can be scanned, parsed and
compiled by a tool

• Debriefing
• a conversation between tester and

manager or test lead

vs.

21
For more info, see http://www.satisfice.com/sbtm

22

Charter:
A Clear Mission for the Session

• From one to three sentences
• May suggest what should be tested, how it should be

tested, and what problems to look for
• May refer to other documents or information sources
• A charter is not meant to be a detailed plan.
• General charters may be necessary at first:

• “Analyze the Insert Picture function. Create a test coverage
outline and risk list to guide future sessions.”

• Specific charters provide better focus, but take more effort
to design:
• “Test clip art insertion. Focus on stress and flow techniques, and

make sure to insert into a variety of documents. We’re concerned
about resource leaks or anything else that might degrade
performance over time.”

23

How To Measure ET Effectiveness

Track rough percentage of time
spent on
• Test design and execution
• Bug investigation and reporting
• Setup

Produces
coverage

Interrupts
coverage

Ask why time was spent on each:
• Lots on T might indicate great code, but might indicate poor bug-

finding skill
• Lots on B might mean code quality problems, but might suggest

inefficiency in reporting
• Lots on S might mean testability or configuration problems for

customers, or it might mean early days of testing

24

How To Measure Test Coverage

• Test coverage isn’t merely code coverage
• Identify quality criteria, and identify session time

focused on each criterion
• Consider product elements (structure, function,

data, platform, operations, and time); break them
down into coverage areas

• Assess test coverage in terms of
• Level 1: Smoke and sanity
• Level 2: Common, core, critical aspects
• Level 3: Complex, challenging, harsh, extreme,

exceptional

25

25

How To Manage Exploratory Testing

Guide testers with personal supervision and
concise documentation of test ideas. Meanwhile,
train them so that they can guide themselves and
be accountable for increasingly challenging work.

Test
Ideas

Achieve excellent test design by
exploring different test designs

while actually testing and
interacting with the system

Product

Product
or spec

Checks

Tests

26

Acknowledgements

• James Bach (http://satisfice.com)
• Cem Kaner (http://www.kaner.com)
• Thanks to Chad Wathington for his

collaboration on this talk

Questions? More information?

Michael Bolton
http://www.developsense.com
michael@developsense.com

27

Readings

• Perfect Software and Other Illusions About Testing
• Quality Software Management, Vol. 1: Systems Thinking
• Quality Software Management, Vol. 2: First Order Measurement
• Exploring Requirements: Quality Before Design

• Gerald M. Weinberg
• Lessons Learned in Software Testing

• Kaner, Bach, and Pettichord
• DevelopSense Web Site (and blog), http://www.developsense.com

• Michael Bolton
• Satisfice Web Site (and blog), http://www.satisfice.com

• James Bach
• Collaborative Software Testing, http://www.kohl.ca

• Jonathan Kohl
• Quality Tree Software, http://www.qualitytree.com

• Elisabeth Hendrickson

