
July/August 2009 $9.95 www.StickyMinds.com

The Print Companion to

WHY AUTOMATE?
6 good (and not-so-good)

objectives

SOUND THE ALARM!
Burn charts for tracking

project progress

16 BETTER SOFTWARE JULY/AUGUST 2009 www.StickyMinds.com

Test Connection

Three Kinds of Measurement and
Two Ways to Use Them
by Michael Bolton

People often quote Lord Kelvin: “I often
say that when you can measure what
you are speaking about, and express it
in numbers, you know something about
it; but when you cannot express it in
numbers, your knowledge is of a meager
and unsatisfactory kind; it may be the
beginning of knowledge, but you have
scarcely, in your thoughts, advanced to
the stage of science, whatever the matter
may be.”[1] But, few note the sentence
that precedes the passage: “In physical
science the first essential step in the di-
rection of learning any subject is to find
principles of numerical reckoning and
practicable methods for measuring some
quality connected with it.” The missing
sentence prompts some questions: Are
software development and testing sci-
ences subject to the same kind of numer-
ical measurement that we use in physics?
If not, what kinds of measurements
should we use? How could we think
more usefully about measurement?

Gerald M. (Jerry) Weinberg suggests
thinking in terms of three broad catego-
ries. [2] First-order measurement, he says,
is what we need to get started—“just ad-
equate to the task of getting something
built.” First-order measurement tends
to be qualitative, fast, and inexpensive;
it generally doesn’t require mechanisms
or devices to enhance or extend the ob-
servation. In a recent conversation, Jerry
told me that first-order measurements
“are unobtrusive, or minimally obtru-
sive, and can be used without a whole
lot of fuss. They help give you a lot of
important information that can lead to
other information or, in the best case, to
immediate action if needed.” [3]

First-order measurement is what
we’re doing most of the time as we’re
driving a car. We look through the win-
dows, listen to the engine, and feel the
acceleration and deceleration. We make
observations and comparisons without
getting hung up on quantification. “The
road is dry. It’s cloudy. There’s traffic

on the right and a car up ahead with its
brake lights on.” First-order measure-
ment suggests answers to the questions
What seems to be happening? and What
should I do now? In this situation, if
you feel like you’re driving too fast, you
probably are driving too fast. If so, first-
order measurement is enough to inform
an immediate and appropriate action:
slow down.

Because it’s based on ongoing experi-
ence and feelings, rather than on careful
experiments and controlled data intake,
wise use of first-order measurement re-
quires us to consider a number of pos-
sible interpretations of the meaning and
significance of what we see. Suppose you
feel like you’re driving fast, but not too
fast. Now you observe a set of red and
blue lights on the top of the car ahead.
The extra data suddenly prompts you to
realize that you’re uncertain about your
relationship to the speed limit. The situa-
tion and first-order measurement prompt
a different response in the form of ques-
tions: What else do I need to know? and
Where should I look? At this point, you
move into second-order measurement
and refer to the speedometer.

Second-order measurement, says
Jerry, is the kind of measurement that
engineers use to tune relatively stable
systems, making them cheaper, stronger,
lighter, more reliable, faster—or slower,
if that’s what’s desired. Second-order
measurement focuses on questions like
What’s really happening? and How is it
changing? tending to be more quantita-
tive, subject to more refined models, and
generally busier than first-order mea-
surement. It is often assisted by external
instruments to supplement or refine di-
rect sensory intake. In particular, met-
rics—mathematical functions that relate
objects or events to numbers via a mod-
el—are second-order measurements.

Back in the car, second-order mea-
surement is the kind of information that
you obtain from looking at the dash-
board. You note that your speed is forty-
three miles per hour and that the posted
limit is thirty-five miles per hour. Your
quantitative, second-order measurement
tells you that you’re above the legal
limit. The apprehensive feeling in your
gut, triggered by the combination of po-
lice car and the second-order measure-
ment, informs a decision to slow down.

IS
TO

CK
PH

O
TO

 www.StickyMinds.com JULY/AUGUST 2009 BETTER SOFTWARE 17

What of third-order measurement?
That, says Jerry, is the kind of precise,
highly quantitative measurement that
supports the physicist’s search for new
natural laws. It helps us answer the ques-
tion What happens? in a universal and
general sense. But third-order measure-
ment can be precise only because it tends
to be about very simple systems (such as
two interacting masses) or very simple
models of complex systems (in which we
choose to ignore many dimensions of the
system, but analyze a very small number
of dimensions very thoroughly). Perhaps
most significantly, third-order measure-
ment emphasizes and depends upon
keeping messy human traits—variability,
subjectivity, and values—out of the way.
As noted in an important paper by Cem
Kaner and Walter P. Bond, [4] using
metrics and higher-order measurement
wisely depends on construct validity—
critical rigor in evaluating the models
and the functions that form the basis for
the measurement.

In Rapid Testing, we define a control
metric as any metric that drives a deci-
sion. Some development groups stan-
dardize the decision to ship the product
when it contains a low-enough threshold
number of high-severity bugs. Others
consider a program adequately tested if
there’s one positive and one negative test
per “requirement” (meaning per line in
a requirements document). Still others
deem a test group “successful” if there is
a low-enough percentage of rejected bug
reports. By contrast, an inquiry metric is
one that prompts a question: We have
three open high-severity bugs—What’s
the story there? Jim and Mark are two
days behind where we thought they’d
be—Do they need help? The program
managers are deferring a lot of problem
reports—Are the problems insignificant,
or do we need more training because we
don’t understand the product?

One of my recent clients rated the
quality of its products and customer
satisfaction with a basket of five second-
order metrics. Each measurement col-
lapsed months of work and tons of data
into a single number. “Better” numbers
earned praise; “worse” numbers earned
a reprimand, so management meetings
dragged on while people tried to explain

changes from last month’s numbers—
especially when things had gotten worse.
At this company, schedules frequently
slipped and shipments were often de-
layed. Yet when I asked testers the simple
question: What slows you down? I got
a wealth of information. They told me
about broken and buggy builds, inad-
equate test environments, excessive em-
phasis on scripts that were out of date
by the time the product arrived, and a
lack of information about real customer
needs. They also said they were wasting
time collecting data that wasn’t being
used to help speed up development or
testing, and they offered dozens of ways
in which the numbers could be gamed.

A different client, also working on
one-year project cycles, focused on ques-
tions like: What happened this week?
What did we get done? What problems
did we run into? Managers used per-
sonal contact—direct observation of
and conversation with people—as their
primary approach to assessing the proj-
ect’s status. They took a good number
of quantitative measurements, but used
them only as indicators to refine their
initial assessments and to inform new
first-order questions. The team made
rough long-term estimates and more
precise short-term estimates, dividing
two-week cycles into tasks of two days
or less, with clear deliverables that sig-
naled completion. When tasks weren’t
finished in the estimated time, no one
was punished; instead, everyone consid-
ered what he hadn’t understood earlier,
what he had learned, and what might
inform a better estimate next time. Team
members didn’t collect metrics on things
that weren’t immediately interesting
and important to them. They were in-
terested in understanding the situation
and optimizing the quality of the work,
not in the appearances afforded by the
metrics. They emphasized the game and
the season over the box scores. And they
consistently shipped high-quality prod-
ucts on time.

They did use one—and only one—
control metric. When the amount of open
problems exceeded a certain number,
they stopped working on new features
and fixed problems until the list was
comprehensible and manageable again.

Test Connection

What’s your experience with
observation and measurement

in your organization?

Follow the link on the StickyMinds.com
homepage to join the conversation.

Jerry observes that in software engi-
neering we seem obsessed with higher-
order measurements. Why? He suggests
that decisions about quality are political
and emotional, based on discussions and
decisions about whose values count and
how much they count relative to one an-
other. [5] Such issues are often distasteful
to people who want to appear rational
and “scientific,” so we try to avoid those
issues with appeals to higher-order mea-
surement.

Each new software project involves
a human context—interaction between
different sets of clients, developers,
tasks, and problems to solve, with high
variability, contending values, and small
sample sizes. In those environments,
third-order measurement isn’t achiev-
able; it’s an expensive distraction. That
leaves us with cycles of first- and sec-
ond-order inquiry measurement—not
physics, but easily good enough to build
and tune our systems. {end}

RefeRences
[1] Thomson, William (Lord Kelvin). “Electrical
Units of Measurement.” Popular Lectures and
Addresses I (London, 1981-94).
[2] Weinberg, Gerald M. Quality Software
Management, Vol. 2: First-Order Measurement.
Dorset House Publishing, New York, 1993.
[3] Weinberg, Gerald M. Personal correspon-
dence with the author, May 18, 2009.
[4] Kaner, Cem and Walter P. Bond. “Software
Engineering Metrics: What Do They Measure
and How Do We Know.” 10th International
Software Metrics Symposium. Chicago, IL,
2004. www.kaner.com/pdfs/metrics2004.pdf
[5] Weinberg, Gerald M. Quality Software
Management, Vol. 1: Systems Thinking. Dorset
House Publishing, New York, 1991.

