
May/June 2009 $9.95 www.StickyMinds.com

The Print Companion to

STAND AND DELIVER
Panic-free

presentations

THE GOOD, THE BAD,
AND THE VIRTUAL LAB
Is VLA right for you?

STAND AND DELIVER
Panic-free

presentations

THE GOOD, THE BAD,
AND THE VIRTUAL LAB
Is VLA right for you?

14 BETTER SOFTWARE MAY/JUNE 2009 www.StickyMinds.com

Test Connection

Issues about Metrics about Bugs
by Michael Bolton

In my travels, I’ve worked with a number
of companies that have attempted to
assess the quality of their testing—or
worse, their testers—using poorly con-
sidered metrics. Sometimes the measure-
ment is based on a count of bugs that
make their way into the released product
(escaped bugs); sometimes the measure-
ment includes another factor, like the
number of bugs found before release. To
many managers, this kind of measure-
ment has intuitive appeal: If the purpose
of testing is to find bugs, then assessing
the quality of the testing effort starts
with looking at the number of bugs that
the testers found or didn’t find before
the product was released. How could
this appealing-sounding metric possibly
go wrong?

One answer is found in reification error
[1]. A bug isn’t a concrete thing, like an
airplane or an apple. “Bug” is a label for
a construct, an idea. One idea might be
that a feature seems to be missing, another
might be that performance is slower than
we’d like, and yet another might be that an
error message is accurate but unhelpful. A
bug could be something missing, or some
form of behavior that we don’t want to
see. To Rapid Testers, a bug is anything
that threatens the value of the product [2].
Value is multidimensional and subjective.
Someone may value a buggy product that
she owns over a less buggy product that
she considers too expensive. Someone else
may reject a product that provides excel-
lent performance, preferring one that is
compatible with his other applications.
Like “value,” “problem,” and “accept-
ability,” bugs are not tangible, countable
things; they’re expressions of part of a re-
lationship between some person and some
product [3].

To us testers, often it seems amply clear
that some behavior represents a bug. A
system crash, an inaccurate calculation,
or a mangled record is very likely to be a
problem and a threat to the value of the
product. A direct violation of a reliable
specification is probably a bug, as is a cor-

rupted display or an unexpected, persistent
howl from the system’s speaker. Yet some
evaluations require more subtlety. If the
program rejects an input value as “too big”
when a reasonable user might disagree, we
have reason to suspect a threat to the value
of the product—that is, a bug—even if
the specification clearly outlines a smaller
range of supported values. Is this an inten-
tional limitation or did a business analyst
misinterpret or mistype the end-user’s re-
quirements? This is why it’s so important
for testers to change the question “Does
this test pass or fail?” to a question that
better addresses a possible threat to some-
one’s values: “Is there a problem here?”[4]

One oracle—a heuristic principle or
mechanism by which we recognize a
problem—might tell us that there is no
problem, where another oracle would
cause us to perceive a problem imme-
diately. As testers, we may have strong
beliefs one way or the other, but it’s the
project owner who gets to make the de-
cision. That’s why our role is not merely
to report things that are bugs but also to
report things that might be bugs or that
could be bugs when viewed through a dif-
ferent set of values.

In addition to reporting bugs, it’s also
the role of the tester to report on issues.
Where a bug is something that threatens

the value of the product, for Rapid Testers
an issue is something that threatens the
value of our testing. (Some people call this
a concern or obstacle. The concept is im-
portant, but the label isn’t; call it whatever
you like.) If we’re uncertain about whether
something is a bug or not, that’s an issue.
If we identify a problem with testability—
anything that slows down testing or that
makes it difficult to determine whether or
not there’s a problem—we may be seeing a
bug, but at the least it’s an issue. If we lack
sufficient equipment, tools, or training to
accomplish the mission in the required
time, that’s an issue. If a product that we’re
testing has so many problems that investi-
gating and reporting them dominates the
time we have available for finding them,
that’s an issue, too. We’ll come back to
that point.

When a product is released or deployed,
it’s because some person—the product
owner—has decided that it’s ready to go.
That decision should be based on another:
Does the product owner have sufficient
information to make the ship/no-ship deci-
sion? That’s a judgment call, based upon
not only technical information but also
upon business imperatives. A tester is un-
likely to have authority over the schedule,
the budget, staffing, or market or contrac-
tual obligations. So, while the tester helps

IS
TO

CK
PH

O
TO

 www.StickyMinds.com MAY/JUNE 2009 BETTER SOFTWARE 15

to inform the decision, he shouldn’t be
making the decision unless he is also the
product owner.

For the same reason, the tester should
be very careful about asserting that the
product has been “adequately” or “com-
pletely” tested. A clothing salesman should
offer excellent service to the customer as
long as she’s is in the shop, but he can’t be
held responsible for deciding whether the
customer has bought too much, too little,
or just enough. If something looks par-
ticularly embarrassing or complimentary
on the customer, the salesman can assist
the customer by pointing it out. If there’s
some interesting, new piece in the back
room, it behooves the salesman to bring
it to the customer’s attention. But in all
cases, the customer—not the salesman—is
responsible for deciding what she wants to
buy, what services the salesman shall pro-
vide, when he has completed his service,
and whether the service was adequate.

So it is with a tester and his client. The
tester provides information about prob-
lems in the product, but those shouldn’t be
the only items that he brings to the table.
The tester may also report on benefits in
the product, about comparable products,
or about risks. The tester should also be
prepared to point out parts of his work
that he would recommend covering, but
that he hasn’t covered. The product owner
uses that information, along with all of the
other technical and business information,
and decides whether she has enough infor-
mation to issue the order to ship.

This is a good reason to be wary of bug
metrics. The project owner is the person
who ultimately makes the decision about:
what is a bug, whether the known bugs
are trivial enough to permit shipment,
whether there are sufficiently important
open questions such that shipping would
be unwise, and whether the business pri-
orities outweigh the technical ones. These
decisions will have a profound impact on
any attempt to count bugs, either before or
after the product is released.

Bugs in the product may inhibit our
ability to find bugs. Some problems—
blocking bugs—may make it difficult to
execute tests by preventing access to parts
of the product that require further testing.
Other problems—intermittent bugs—may
cause test results to be inconsistent, incon-
clusive, or ambiguous. If there are large

numbers of bugs to fix, programmers may
provide us with a large number of builds
that we must reinstall and reconfigure—or
they may provide us with a single build on
which we have to do dozens of fix verifi-
cations before we can pick up again with
other tests. All of these interruptions—
setup, configuration, bug investigation,
and reporting—take time away from the
design and execution of new tests, wherein
we obtain more coverage of the product.
So, a buggy product gives bugs more time
and more places in which to hide, requires
more time to test to the same level of cov-
erage, or both. That’s an issue—a very
common and very serious issue.

If there are many bugs in the product
after release, it may well be that the testers
have done less than excellent work. Yet
there are many other plausible explana-
tions: a very complex product, inadequate
programmer testing, an overly aggressive
schedule, a rational business determination
by product management that the known
problems in the product aren’t worth
fixing, or any or all of the above. Next
time, we’ll talk about the risk of metrics
based on possible motivations for them:
inquiry or control? {end}

RefeRences
[1] Levy, David. Tools of Critical Thinking:
Metathoughts for Psychology. Waveland Press,
2003.
[2] Bach, James, and Michael Bolton. “Rapid
Software Testing.” www.satisfice.com/rst.pdf
[3] Bolton, Michael. “It’s All Relative” in Fiona
Charles, et al. The Gift of Time. Dorset House,
2008.
[4] Bach, James, and Mike Kelly. “Is There a
Problem Here?” www.michaeldkelly.com/pdfs/
IsThereAProblemHere.zip

Test Connection

Who decides what the
criteria for a bug are in your

organization? What do you do to
make sure that your metrics prompt

questions and investigations,
rather than drive decisions?

Follow the link on the StickyMinds.com
homepage to join the conversation.

