
October 2008 $9.95 www.StickyMinds.com

The Print Companion to

CODERS GONE WILD
Three common

archetypes and how
to handle them

GOOGLE WEB TOOLKIT
Your key to simplifying

Ajax app builds

20 BETTER SOFTWARE OCTOBER 2008 www.StickyMinds.com

Test Connection

Got You Covered
by Michael Bolton

IS
TO
CK
PH
O
TO
	

How much of the product have you
tested? How completely have you tested
it?

These are innocent little questions—
the kinds of questions that a client might
ask about test coverage. Their simplicity
hides an enormous amount of complexity
that clients and many testers might not
understand. Answering these questions
can be surprisingly difficult and can lead
us and our clients into several traps.

Suppose that we were to define com-
plete testing as “all possible tests having
been perfectly performed.” Most people
would quickly recognize that this goal
is impossible to achieve in anything less
than an infinite amount of time, so when
reasonable people ask, “Have you tested
this product completely?” or “How
much of it have you tested?” they must
mean something else. They might mean
“Have you identified all of the important
risks that we’ve anticipated?” But they
might also mean “Have you discovered
important problems that we didn’t an-
ticipate?” They might mean “Have you
tested on a wide variety of platforms?”
or “Have you tested each element of
the user interface?” Perhaps they simply
mean to ask questions about the quan-
tity or quality of our testing: “What
has—and hasn’t—been tested?”

In his book Software Testing Tech-
niques, Boris Beizer defines coverage as
“any metric of test completeness with re-
spect to a test selection criterion.” This
makes some kind of sense when our test
selection criterion is quantifiable: If there
are 100,000 lines of code and we’ve only
tested 80,000 of them, it follows that
there is code that we haven’t covered. In
order to detect uncovered code, we could
enlist the aid of code coverage tools.
Such tools tell us about the statements
or branches that have been touched (or
not touched) during testing. For the code
that we haven’t touched, the tool tells
us that we haven’t touched it, and that
might be important. Some people might
believe that if we touch a line of code

once, with a particular data value, it’s
been “covered,” and in one sense it has.
But coverage tools don’t (and can’t) tell
us what we’ve looked for, how carefully
we’ve looked, what we’ve observed, and
what we’ve missed. We could perform
tests that verify that a given function
was performed, that a particular path
was executed, that certain data values
were entered, and that an expected re-
sult was returned, but while doing that,
we could easily miss problems related to
other data values, usability, robustness,
security, performance, platform varia-
tions, timing, and so forth.

Yet there are other problems here,
too. Code coverage tools can’t read our
minds and can’t comprehend the inten-
tion of the product. Tools can’t decide
whether the code we’re testing performs
a function that we value, and tools
can’t recognize that a potentially valu-
able function is missing. Moreover, our
source code doesn’t give us the whole
picture, because the program that we’re
producing is rarely part of a simple
system. Our software tends to interact
with other software and hardware in
systems that are increasingly beyond our
capacity to comprehend. In a presenta-
tion at STARWEST 2007, Lee Copeland
raised the problem that we have no clue
of how to define coverage that includes
behavior that emerges from complex
systems given our limited understanding
of them. This problem inevitably pres-
ents itself when our product interacts
with the rest of a system—an operating
system, third-party libraries, intercon-

nected machines on a network. For such
systems, we can’t know about the com-
pleteness of the coverage we’re getting
because we can’t comprehend what 100
percent is. We could do that for a closed
system, but when software interacts with
anything outside of itself, the system isn’t
closed any more.

There is a way out of the trap, though:
We can model. A model is some idea,
activity, or object that represents (liter-
ally, “re-presents”) something—another
idea, activity, or object—such that un-
derstanding something about the model
may help us understand or manipulate
the thing that it represents. Models hide
or ignore certain kinds of information
in order to help us focus on informa-
tion that we care about. In his lengthy
and vigorous (and quite amusing) attack
on using lines of code as a metric, Beizer
points out many valuable ways to model
the code and its structure. For example,
we could graph the control-flow, state-
related, or logical structures in the pro-
gram and then execute the program to
cover the graphs—a much more robust
metric of test completeness in terms of
code coverage.

Yet the source code itself is a model
of a computer program, because a com-
puter program isn’t just code. As Cem
Kaner suggests, a program is not merely
“a set of instructions for a computer.”
Instead, he says, a computer program
is “a communication among several
humans and computers who are sepa-
rated over space and time that contains
instructions that can be run by a com-

 www.StickyMinds.com OCTOBER 2008 BETTER SOFTWARE 21

Test Connection

How do you start thinking
about coverage?

Where does that take you?

Follow the link on the StickyMinds.com
homepage to join the conversation.

puter” and adds that “the point of the
program is to provide value to stake-
holders.” That’s why code coverage isn’t
the same thing as test coverage. Test ex-
ecution involves configuring, operating,
observing, and evaluating the product
in some way, and operating the product
always produces some code coverage.
But our clients don’t value the code as
such; they value the things that the code
does for them. That’s what they’re really
asking when they ask about “how much
of the product we’ve tested.” The value
of our work comes from describing what
we’ve observed and evaluated, so if we
want to understand, explain, discuss, or
improve our coverage, we need a rich set
of models.

The first step when we’re seeking to
evaluate or enhance the quality of our
test coverage is to ask who is interested
and what they’re interested in—that is,
who and what we’re determining cov-
erage for. Excellent testing starts by first
questioning the mission. The higher-level
we go at first, the more context we have
for identifying things that might be valu-
able to observe. So think “higher,” or

“hire”—what have we been hired for?
Who is our client? Who are the people
who will use the product, directly or indi-
rectly? Who are the other stakeholders?
What is our mission for this particular
cycle of testing? What is the overall mis-
sion for the project and the product?
What do people say about it? What is its
history? Are there comparable products
available—competitive products, or past
versions of this product? These ques-
tions can help us set context and focus
our attention on things that are known
to matter, while also helping us recognize
things that haven’t yet been anticipated
as being important. As Donald Rums-
feld said, “There are known unknowns,
and there are unknown unknowns.”
One key objective of testing is to move
things that we don’t know in the direc-
tion of things that we do know. Known
unknowns hide risk. But the biggest risks
may be the ones that we haven’t thought
of—the unknown unknowns.

One of the most effective and efficient
ways that I know to start addressing the
unknowns is to learn about the knowns.
Get close to your clients and start asking

questions. Begin with, “May I ask ques-
tions?” If the answer is yes, then ask
away. If the answer is no, then it might
be useful and important to outline the
things you don’t know about and the
risks associated with proceeding with
insufficient information. Jot down some
notes about that, and don’t forget to in-
clude a date and time.

If the client is willing to answer ques-
tions but isn’t clear on what to cover,
then you can provide some suggestions
as to what you might look for, and ask
if they’d be relevant. If you’re inclined to
start by thinking about verifying func-
tional correctness, that’s OK, but you
will soon want to broaden your models
to think about other kinds of problems
and risks, too—and how your tests will
cover them. I’ll talk about how to do
that in the next column. {end}

DON’T BE SHYDON’T BE SHY

