
April 2008 $9.95 www.StickyMinds.com

The Print Companion to

GET TO YES
How to win

management
buy-in

REV UP REUSE
Popular

source code
search engines

Test Connection

The other night, I went to a local hard-
ware store to replace a broken piece of a
shelving unit in my daughter’s closet. The
store was closed, so I went to the compet-
itor across the street—a chain store that
I usually avoid because of patterns of fa-
miliar problems. I found something that
looked like the part that I needed and
took it to the cashier. I spent the usual
several minutes in line, watching the ca-
shiers address one problem after another
related to the point-of-sale system that
the store uses. Some items were missing
the barcode stickers that allow items to
be scanned and recognized by the soft-
ware; the prices of some sale items were
inconsistent with the prices displayed on
the shelves; and some items apparently
weren’t in the system at all, even though
they had seemingly legitimate stickers.
Each customer transaction took several
unnecessary minutes to resolve.

The fellow ahead of me was sipping
a cup of coffee. I should have gotten one
for myself, I thought—we’re likely to be
here for a while. As usual. The coffee
drinker looked around. “Bloody com-
puters,” he said to me. “They’re always
broken at this store.”

“That’s my experience, too,” I re-
plied. “Although, technically, the com-
puters are probably working just fine;
it’s the programs that are broken.” We
had time for a chat, and eventually he
learned that I was a software tester.

“Ha! I guess the program for this
system wasn’t tested very well,” my new
friend said.

“Well, without specific information
about the project, I can’t be sure of
that,” I replied. “When we testers find
a problem, it’s up to programmers and
managers to decide what to do about
it. They might decide to fix it, or they
might decide that the problem isn’t seri-
ous enough to bother with. They often
decide not to fix problems because they
perceive that it might be expensive or
risky, which can be a reasonable decision
in a lot of cases. On the other hand, you

only really get to find
out about the quality of
your risk assessment by
paying attention to what
happens in the field.”

He finished his cup
of coffee. “It doesn’t
look like they’re paying
much attention here,”
he said.

“It doesn’t, does it?
It’s too bad, because
confusion, delays, or annoyances—for
the sales clerks or the customers—are
real problems. They affect employee
morale, the length of time that it takes
to pump a sale through the system,
and things that the customers value—
like their time. Ultimately, that affects
the bottom line. The store needs more
cashiers to handle the same number of
customers, or employees get frustrated
and quit.”

“Or customers head for the competi-
tion.”

“Right. Managers here don’t seem to
observe the problems that the cashiers
are having, and they don’t seem to take
notice of the amount of time that cus-
tomers spend in line. I’ve been avoiding
this chain for years because I can depend
on having to wait more time than I think
is reasonable. I only come here when I’m
desperate.”

“Me too,” he said. “Don’t managers
realize how much that costs them?”

“Well, people say that missed oppor-
tunities are hard to measure. Plus, it’s
hard to evaluate things when you don’t
see how they interact with the rest of
the system. Most testers sit in front of
computer screens, testing the software
but not the process that it’s designed to
support. If they tested the whole sys-
tem, good testers would discover more
important weaknesses, and they’d be
able to tell better stories about how the
problems threaten value. Smart develop-
ers and smart managers would notice
possibilities for increased value if the

system worked better. I can’t say much
about the testing, but I can pretty much
guarantee that the system hasn’t been
developed, or managed, very well.”

It was finally my new friend’s turn
to go through the checkout. He did so
without incident. He looked over his
shoulder and grinned as he left, “Good
luck.”

My turn. I realized to my horror that
my shelf bracket didn’t have a sticker on
it. “It costs a dollar ninety-seven,” I said
weakly. The cashier asked me if I could
wait for someone to do a price check.
I had noticed that staff members were
constantly being paged for price checks,
and that people were waiting a long
time for the information to come back.
I decided to go and get the information
myself.

There was a label on the shelf with
a description, a bar code, and two num-
bers: 71924-20 and A434-300. There
was no picture to match the product
with the code, but most of the brackets
in the same bin looked the same as the
one I had. The description of the product
was easy to remember. I fumbled for my
notebook, but I had left it in my other
jacket. I had a receipt in my pocket, but
no pen and no staff around to lend me
one. I memorized the numbers using
some mnemonic tricks (7pm is 1900
hours, of which there are 24 in a day, 20
is easy. A’s the first letter of the alphabet,
434’s a palindrome, and 300 is a lousy
movie.) I took the long walk back to the
cashier.

“71924-20,” I said. She typed it in.

Learning the Hardware Lessons
by Michael Bolton

18 BETTER SOFTWARE APRIL 2008 www.StickyMinds.com

IS
TO

CK
PH

O
TO

out testing the product in the field and
asking, “Is there a problem here?” And
finally, I’ll guess that, to this day, they
don’t know about the frustrations that
customers and cashiers alike are having
with the system.

Systems and software aren’t just
about correctness; they’re also about
solving problems for people. One prin-
ciple of the context-driven software test-
ing movement says that if the problem
isn’t solved, the product doesn’t work.
Testers: Could we find more bugs—and
more important bugs—in our systems
by observing something other than the
software itself? And managers: What
problems could we prevent by letting
our testers see more than some screens
and some specifications? {end}

“Wait. That’s too many numbers,”
she said, clearly frustrated.

I said, “The only things that work in
this place are the people. I really do ap-
preciate that you’re struggling here.” She
smiled. “What about A434-300?”

She tried it. “Nope. Six numbers is
right, but it can’t start with a letter.” I
looked all over the item. There was a
number on it—but only four digits.

“What about dropping the A?” I sug-
gested. “434-300?”

She tried backspacing, but that dis-
played only equal signs in the text field.
Shift-backspace allowed her to back-
space over the whole field, and she typed
in the number. “Ah, that works. Shelf
bracket. A dollar ninety-seven.”

That was a lot of work for a two-
dollar part, and the system didn’t do
very much to help. Why are there two
numbers on the bin label? Why is nei-
ther number identified? Why does the
software accept neither and reject both?
Why isn’t the acceptable number printed
on the label? When I mistype some-
thing in the Google search window that

doesn’t match an entry in its database,
Google offers a plausible suggestion—
a close-but-not-exact match. Couldn’t
the store’s system have tried a database
search based on the numeric portion
of the number? Couldn’t it have cross-
referenced one catalog with another to
offer at least a choice or a guess as to
what the product might be? Meanwhile,
the clerk had an idea about the correct
number format, but not how to deal
with an incorrect number. Had manage-
ment realized this as a training issue?

I’ll guess that when the developers for
this product designed, built, and tested
it, they thought in terms of confirming
that it worked. I’ll guess that when they
tested it, they used all kinds of bound-
ary testing and field validation checks
to make sure that the software accepted
properly formatted numbers and re-
jected improperly formatted numbers.
Those things are important. But I’ll also
guess that they tested the software in
isolation from the environment in which
it was intended to operate, and that they
looked for functional correctness with-

Test Connection

How would you answer the
questions above?

What additional questions
should we be asking?

Follow the link on the StickyMinds.com
homepage to join the conversation.

PNSQC 2008
Collaborative Quality

World-class quality does not happen in a vacuum. Agile-inspired collaboration
spans levels, disciplines, and industries.

www.pnsqc.org
October 13 -15, 2008

Portland, OR

2008 keynote speakers Ron Jeffries and Chet Hendrickson will address
Quality Dynamics in Agile Software Development.

 www.StickyMinds.com APRIL 2008 BETTER SOFTWARE 19

