
March 2008 $9.95 www.StickyMinds.com

The Print Companion to

ALL ABOARD
Keep your test 

coverage on track

THINK GLOBALLY
Tips for building a 

distributed team



18 BETTER SOFTWARE MARCH 2008 www.StickyMinds.com

Test Connection

“I know how to spell banana,” the little 
girl said. “I just don’t know when to 
stop.”

An entirely scripted action is one in 
which the person performing it makes 
no decisions of her own; all of the ideas 
came from some other person, some 
time in the past. An entirely exploratory 
task comes from inside the person per-
forming it, in the moment that the task 
is being performed. No test performed 
for a client is entirely exploratory: The 
exploratory tester has a mission that ul-
timately derives from some goal or need 
previously expressed by the client. No 
good test—except one performed by an 
automaton—is entirely scripted, either. 
Only the worst imaginable human tes-
ter will fail to break out of the script, 
pause, and take note when he recognizes 
a problem of some kind. Even in a heav-
ily scripted process, testers are usually 
encouraged to investigate the bugs that 
they find—and that requires exploratory 
behavior. Since the bug itself was unpre-
dicted, the decision to stop is unpredict-
able, too.

The nice thing about an entirely 
scripted task is that you know when 
to stop. The last note of the musical 
score, the last line of the play, and the 
last empty space on the paint-by-number 
canvas all mark the end of the work. 
When you’re using a highly scripted ap-
proach to test, you stop when you’ve no-
ticed a problem, have more questions, or 
have an interesting idea.

When you’re exploring, knowing 
when to stop is less obvious. In a jam 
session, musicians signal each other with 
eye contact and musical cues so that they 
can fade out or stop together. Improv ac-
tors build unscripted scenes, play them 
out, and then freeze in position or break 
character when they discover a plausible 
conclusion.  To someone unskilled in 
these arts, the factors that go into the 
decision to stop tend to be unclear or in-
visible.  Even among performers, the less 

experienced might not 
be able to articulate the 
elements of the stopping 
decision, but the skilled 
practitioners can. 

Exploratory testers 
design and execute tests 
in the moment, starting 
with an open mission and 
investigating new ideas as 
they arise.  When do we 
stop?  How can we be 
sure that we were done?  
And how can we justify 
our decisions to our cli-
ents?

The first step is to 
recognize that we can’t 
be sure that we’re done. 
Any approach to answer-
ing the stopping question 
is necessarily heuristic, 
based on some fallible, 
context-dependent method 
for solving a problem or 
making a decision. Heuristics serve the 
purpose of learning and discovery quickly 
and inexpensively, but not conclusively—
rather like indicator lights on your car’s 
dashboard. When any lamp on your 
dashboard glows red, you should con-
sider stopping until they’re all green 
again—but maybe it’s more important 
to ignore the lamp and keep going. Con-
sider these heuristics:

Time’s Up!: If we’ve specified an ex-
plicit timebox for a test, we might choose 
to stop when we’ve exhausted the time 
that we allocated to the task. Might our 
timebox have been inappropriately arbi-
trary? Might we want to allocate more 
time for further investigation?

Piñata: When the candy starts cas-
cading from a piñata, we typically stop 
whacking it. If we see something reason-
ably spectacular when we’re testing—a 
crash or hang, screen or data corrup-
tion, behavior that we can’t understand 
or explain—we might believe that we’ve 

found a problem that’s dramatic enough 
to justify stopping. Might there be an in-
teresting piece of candy still stuck in the 
piñata?

Dead Horse: When the application is 
down for the count, there’s no point in 
continuing to test. Anything we see after 
this is likely to be a side effect of things 
that we’ve already discovered, or our 
system is corrupted and the integrity of 
the test is compromised, as the develop-
ers will quickly point out when we try 
to report. Moreover, the problems that 
we’ve already discovered will lead to 
bug fixes, and those changes will require 
more testing later. Might we see an even 
more dramatic or damaging problem if 
we proceed a little further?

Loss of Charter: Ultimately, we work 
in the service of a client. If we have any 
reason to believe that our work no lon-
ger has the support of the client, then 
we’ve lost the primary motivation for 
our test. If the client asks us specifically 
to stop, we’re mandated to do so. Have 

IS
TO

CK
PH

O
TO

How Much Is Enough?
by Michael Bolton



 www.StickyMinds.com MARCH 2008 BETTER SOFTWARE  19

we made our client sufficiently aware 
of the risks associated with information 
that we might discover with further test-
ing?

Mission Accomplished!: We might 
determine that we’ve learned the answer 
to some specific question that we asked 
as we set out, and we don’t expect to 
learn anything more than what we’ve al-
ready discovered. We suspect that we’re 
done when we have a plausible story for 
why we think we’re done, and we run 
this story by the client. Might there be 
more to the answer than we’ve already 
found? Might new, important questions 
occur to us if we continue to explore?

I Feel Stuck!: We might choose to 
stop, at least temporarily, when we 
feel stuck, severely confused, under-
equipped, or blocked by some bug. We 
might feel the need for tools, equipment, 
or bug fixes to proceed. Are we really 
stuck, or could we use other information 
to proceed? Could we report that we’re 
stuck and why, and then proceed along 
some parallel or alternative path?

Flatline:  During a stress test, we may 

see the program become unresponsive 
by some measure. No matter how much 
data we force-feed the program, it dis-
plays the same response. We might hy-
pothesize that the program has crashed, 
is throwing data away, or otherwise is 
failing to handle the load. In any event, 
the program is flatlining, and it’s time 
to pull the plug on this test. Might the 
program be handling the stress and re-
covering?

Cost vs. Value: All of the above heu-
ristics are really variations on the idea 
that we stop when the incremental value 
that we are obtaining, or that we antici-
pate, is too low compared to the cost of 
continuing to test. Every activity takes 
time. Our current activity might have 
some value, but is it the most valuable 
thing that we could be doing right now? 
Could we lower the cost of our current 
activity through automating some aspect 
of it? Could we increase the value of the 
activity by using human capabilities of 
observation, cognition, and inference?  

Testing isn’t a race; we’re not in de-
fined lanes, and there’s no clear finish 

line. Scripted approaches might tell us to 
stop too soon or suggest insufficient, un-
important, or distracting observations.  
Part of the power of exploratory testing 
comes from its open-ended nature; we’re 
free to keep testing if we think there’s 
value to be found—a bug, a new test 
idea, or a new aspect of the product to 
discover. Still, we might be wrong. If we 
think we’re done, a problem might man-
ifest itself moments after we’ve stopped 
testing and watching; if we’re inclined to 
go on, we might not add sufficient value. 
More exploration will almost always 
yield more information; with increasing 
experience and skill, we learn to infer 
heuristically whether that extra informa-
tion will matter. {end}

Test Connection

Are you in control of your own 
testing process?

How do you decide whether to 
stop or to keep going? 

Follow the link on the StickyMinds.com 
homepage to join the conversation.




