Test Connection

What Counts?

by Michael Bolton

A while ago, I was asked to test a net-
work packet sniffer. The system displayed
a pie chart indicating the relative number
of packets associated with each IP ad-
dress that had been accessed during the
past five minutes. I generated some traffic
and observed that for five of the sixteen
IP addresses that I had tried, the display
was incorrect—the pie chart overwrote
the legend identifying the IP address. Was
that one test resulting in one failure or
sixteen tests with five failures?

I noted that the relative proportions of
each slice of the pie seemed to be correct.
Then I added one more IP address and
noticed the colors of the pie sections
changed (they were supposed to stay the
same). Now, was that one test or two? If
one, then the single test failed. If two, did
the first test pass and the second test fail?
I noticed that the pie chart appeared to be
a circle. When I resized the window by
shrinking the y-axis, the circle got small-
er. When I restored the window to its
previous size, the circle returned to its
original size. When I resized the window
by shrinking the x-axis, the circle got
smaller. When I resized it by expanding
the x-axis, the circle again returned to its
original size. Was that one test (“resize
the window”), two tests (x, y), or four
tests?

While I was investigating the color-
changing bug, I checked the specification
and found that the pie chart window was
supposed to be a fixed size and not resiz-
able at all. This new information made
me realize that my earlier sizing tests had
uncovered a bug, which changed my per-
spective on the tests that I had already
performed. Was that one failing test (one
bug) or four failing tests (four bugs)? To
make sure I had really observed a prob-
lem, I tried resizing the window again. 1
wondered if this new test should be
counted along with the original test
(tests?).

A couple of years ago, I wrote an

14 BETTER SOFTWARE DECEMBER 2007

vy

automated test for an application that
checked transaction types. A four-digit
field became the index into a table of
transactions. About 3,000 slots in this
table were populated and valid; the other
slots were not. An attempt to use a popu-
lated entry was considered valid while an
attempt to use an unpopulated entry was
invalid. I wrote a quick bit of script to test
all 10,000 possible values. One of the
populated entries was inappropriately re-
jected. Did I do 10,000 tests (“test each
value™), two tests (“test all valid values”;
“test all invalid values™), or did I do one
test (“test all values™)? Note that, in order
to run this test (tests?), I had to populate
eight other fields with plausible data for
each transaction, and creating the values
in some of those fields was challenging.
Not only that, but they were to some de-
gree randomized, so I was testing certain
combinations. Should I have multiplied
10,000 by eight for a total of 80,000
tests? I also observed the time it took to
complete transactions (turnaround time
ranged from just under half a second to
1.5 seconds). Was that observation a test?
Should I have added another 10,000 test

www.StickyMinds.com

)

cases to my count?

I’'m raising these questions not be-
cause I’'m some wise guy who enjoys
teasing people with obscure corner cases
of philosophy and logic. These aren't
corner cases. Deciding what to count and
how to count it are the kinds of decisions
that we make every day. But more impor-
tantly, I’'m raising these questions
because counting tests (and require-
ments, bugs, and other measures derived
from these counts) is an endemic means
of deception in the testing business. Some
well-known testing experts promote this
form of deception; testers then practice
it, and project communities have learned
to ask for it.

The problem here is reification, the
act of giving construct attributes to things
that are merely concepts. Test cases, bugs,
and requirements are expressions of ideas.
If we were evaluating the work of a film
critic, we would sound foolish if we were
to ask how many observations she made,
how many problems she had found in
the film, or how many paragraphs she
had written. I observe that in the testing
business, we are infected with counting

ISTOCKPHOTO



Test Connection

“l observe that in the testing business, we are infected with

counting disease—we are constantly counting test cases,

requirements, lines of code, and bugs. ”

disease—we are constantly counting test
cases, requirements, lines of code, and
bugs. Yet surely one bug can be dramati-
cally different from the next by all kinds
of dimensions—the impact on a given
user, the proportion of the user base it af-
fects, the extent to which it blocks our
ability to see other bugs, the time it takes
to pinpoint it, and the effort required to
fix it. In a similar way, the value of two
tests can differ dramatically. If this test
compares an output value with some ref-
erence, and that test measures the
response time for a Web transaction that
involves dozens of interactions with a
browser, networks, and databases,
should we consider them equivalent and
count them as the same?

Counting tests is like counting vehicles
or cargo—where a vehicle might be a
bus, freight train, tricycle, or space shut-
tle, and cargo might be passengers,
wheat, televisions, or nuclear waste. The
problem is compounded by dividing
these counts by other counts to create ra-
tios, as though cargo per vehicle were a
meaningful ratio unless we knew much
more about the cargo and about the vehi-
cle—to the point where the ratio might
be the least interesting thing about it.

Another fallacy with counting tests is
the assumption that test results are bina-
ry—pass or fail. But that is not the
question that we really want to ask as
testers. That is important, but if we pay
too much attention to that question, or
consider that question only, we’re likely
to miss problems. Instead, ask a more
fundamental question: Is there a problem
here?

When I'm performing tests—configur-
ing, operating, observing, and evaluating
an application—I'm making dozens of
observations every second. Some of them
are important, some trivial (“That’s a

button; now it’s highlighted; there’s a
tooltip; that word is spelled correctly...”)
Sometimes I’'m not even terribly conscious
of making them until, all of a sudden,
something catches my attention. (“Hey,
the tooltip didn’t go away.”) In the course
of preparing for a test of some condition,
often observe a failure of some other con-
dition for which I hadn’t intended to test.
(“The screen isn’t redrawing properly.”)
Often, my observation appears to be in-
consistent with some expectation that I
didn’t even realize I had until the inconsis-
tency appeared. When I take a car for a
fifteen-minute test drive, I make evalua-
tions of all kinds of stuff, paying real
attention to what impresses me or bugs
me. Those evaluations are the result of
hundreds of conscious and subconscious
tests. How do I enumerate those tests—
and would it be meaningful for me to do
s0?

At the very least, we should not de-
ceive ourselves by counting test cases. If
your management asks you to do so, you
may choose to provide them with the mis-
leading information for which they are
asking. It is up to you, but I guarantee
that your management does not under-
stand what “742 test cases” actually
means. I don’t know what it means, and
I'm an expert in this stuff.

In a relatively obscure Monty Python
sketch, an interviewer asks a seasoned but
clearly incompetent actor about the hard-
est role in the theatre. The veteran
responds that the answer must be Ham-
let—Hamlet has 8,262 words. Othello is
hard, too—but it has 941 fewer words
than Hamlet. The interviewer learns
quickly: “How many words did you have
to say as King Lear at the Aldwych in
>52?”—but the actor cautions him, “Well,
now, I don’t want to give you the impres-
sion that it’s simply the number of words.

www.StickyMinds.com

Getting them in the right order is just as
important.”

Testers do the same thing when they
count test cases and requirements, or
when they compare the number of auto-
mated test cases with the number of
“manual” ones—with the implication
that tests are performed by machines or
hands, rather than by minds. Worse, just
as the doddering actor did, testers train
their managers, project communities—
accept
deceptive and seductive numbers. {end}

even themselves—to those

Michael Bolton lives in Toronto and
teaches beuristics and exploratory test-
ing in Canada, the United States, and
other countries. He is co-author, with
James Bach, of Rapid Software Testing
and a regular contributor to Better Soft-
ware magazine. Contact Michael at
mb@developsense.com.

W

Do numbers really speak for
themselves, or do they need a
credible story to give them life

and meaning?
 {
Follow the link on the StickyMinds.com
homepage to join the conversation.

Log on to
www.StickyMinds.com
to read and comment on all of
the Code Craft, Test
Connection, and Management

Chronicles columns.

DECEMBER 2007 BETTER SOFTWARE 15





