Test Connection

Users We Don’t Like

by Michael Bolton

As testers, it’s practically inevitable that at
some point in our careers we’ll show
someone a problem we’ve found and we’ll
hear, “No user would ever do that!” What
that often means is “No user that I’ve
thought of and that I like would do that
on purpose.” A skilled tester will pose the
consequent questions: What kind of user
haven’t I thought of? What might a user I
like do by accident? What kind of users
don’t I like?

People who we intentionally don’t like
are called disfavored users (see the
StickyNotes for a reference). Black hat
hackers are canonical examples of disfa-
vored users—people who might use or
exploit our software with malicious intent,
whose requests we don’t want to honor,
and whose intentions we want to stymie in
some way. Disfavored users might include
pirates, spies, embezzlers, and data or
identity thieves—anyone who might in-
trude, snoop, or steal in a way that
compromises privacy, reliability, safety,
or security. If things are too easy for dis-
favored users, there is a risk that they’ll
exploit vulnerabilities in our software.

Still, some hackers are great black box
testers. They often find catastrophic bugs
and security holes without access to the
inside information that we have. They
have strong technical skills, and they’re
often self-taught. They use lightweight,
powerful tools and they learn to become
familiar with patterns of weakness. We
don’t like hackers’ motives, but it might
be useful for us to respect their skills, to
use their tools, and to look for vulnera-
bilities as capably as they do.

While I was teaching the Rapid Soft-
ware Testing course to a group, I asked
“What kinds of users don’t we like?” I
was fishing for someone to respond,
“Hackers!” Instead, the first answer to
my question was one I didn’t expect:
“People who don’t read the manual!” A
lot of people in the room laughed. I did,
too.

16 BETTER SOFTWARE SEPTEMBER 2007

Hmm. I remembered my
technical support days at
Quarterdeck, when I would
sometimes take calls from
people who seemed unable
to read the manual that we
supplied. Had they done so,
they would have learned
about startup switches and
program parameters that
would have solved their
problems. Those people
were wasting my time and
theirs.

Then I remembered the

opinion of an older, wiser
support manager, who sug-
gested that the only good
parameter was no parame-

ter at all. He believed that

software should be clever enough to deter-
mine when a given parameter is necessary
and simply configure itself without requir-
ing the user to specify anything.

I realized that sometimes it is hard to
like people when they’re not happy with
us—perhaps because we’ve failed to serve
them in some way. Thinking about people
who don’t read the manual might remind
us to identify and report problems that
the software could identify and solve on
its own.

Suddenly, the class was on a roll.
Someone suggested that we don’t like im-
patient users. They’re not willing to wait
for our slow software or to follow our
convoluted workflows. By clicking
around impatiently before the product is
ready, they may expose timing problems
and resource conflicts. Besides, hurried or
impatient people make mistakes and then
blame us for not alerting them to the
problem. Thinking about impatient users
might help us look for usability, perform-
ance, and timing problems.

Someone else piped up, “We don’t like
Luddites (people who insist on using old
stuff), because whenever they buy a new

www.StickyMinds.com

version of our product, they complain

about performance on their old, slow
machines with their outdated operating
systems and browsers—even though our
product is supposed to support those
platforms.” If we’re supporting the older
platforms, we need to include them in
our tests. Thinking about Luddites might
remind us to test for a wider diversity of
platforms.

“We don’t like our network man-

]

agers,” said one participant, “because
they’re control freaks. They keep griping
about installation problems. Once
they’ve got the software installed, they
gripe about configuration and support
problems.” Support people have impor-
tant jobs to do. They serve many people,
and they must do it quickly. Something
that takes an extra moment for a single
user might take dozens or hundreds of ex-
tra moments for a network support
group. Thinking about network managers
might remind us to test for configurability,
supportability, and scalability.

Then things got a little controversial. I
suggested that we don’t like people who
are getting older (as we all are—this is

GETTY IMAGES



the year that I got bifocals). Oh, we say we
like them, but if we observe the way that
we design and test software for them, it is
sometimes hard to see respect for their le-
gitimate needs. Thinking about people
who can’t see very well might remind us to
test our products for accessibility—for ex-
ample, at a wider variety of screen
resolutions.

Naturally, we don’t like developers.
They’re always assuming that we’re sup-
posed to find the bugs, and then they get
upset with us when we do. Then they
complain that they can’t read our bug re-
ports or reproduce the problem on their
machines. And on top of that, they don’t
provide log files or scripting interfaces or
build notes or the things that would make
the product easier to test. Nonetheless, de-
arguably our
important customers. Thinking about de-

velopers are most
velopers reminds us that our job is to
belp make them look good and to pro-
vide them with excellent feedback
quickly, and that to do that effectively we
have to be helpful and collaborative.
Thinking about developers also reminds
us to ask for testability.

We don’t like managers. They never
seem to know what they want, they keep
changing our priorities, and yet they’re
always the first to blame us when a bug
slips through. But managers have it
tough; they have many constituencies to
satisfy, they need to know the kind of in-
formation about the product that we can
provide, and sometimes they don’t un-
derstand what testing can and cannot do.
Thinking about managers reminds us
that we’re a service to the project and re-
minds us to obtain consensus and keep
focus on the testing mission.

Someone suggested, “We don’t like
marketers and salespeople, because they
make all kinds of claims about the prod-
uct and sometimes those claims turn out
to be optimistic or outright bogus. Then
the salespeople say that they thought the
product could do those things, based on
some long-forgotten remark by some de-
veloper in some meeting a while ago.”
Thinking about the salespeople reminds
us to check not only the claims made by
designs and specification but also the
claims in the marketing materials, in
meetings, in email, or in hallway conver-

Test Connection

sation. If the product can’t fulfill the
claim, then the product—or the claim—
must be changed.

Of course, throughout the exercise, we
realized that we didn’t really dislike any of
the people who we had mentioned.
They’re all members of our project com-
munity, and they all have needs and
concerns that might be legitimate. There’s
the old saying that “the customer is al-
ways right.” T like Karl Wiegers’ claim
that the customer isn’t always right, but
the customer always has a point (see the
StickyNotes for a reference).

As we test, we become experts in con-
figuring and operating our products.
When we encounter problems, we often
learn to work around them while we’re
waiting for them to be fixed. Those prob-
lems might recede into the background
and lose prominence for us due to our fa-
miliarity and expertise with the product.
One way to get better at noticing prob-
lems is to consider users we don’t
like—those we legitimately don’t like, and
those we profess to like but whose needs
aren’t apparently being addressed. {end}

Michael Bolton lives in Toronto and
teaches heuristics and exploratory testing
in Canada, the United States, and other

countries. He is co-author,

with James Bach, of Rapid
SPEAKER

Software Testing and a regular

contributor to Better Software
magazine. Contact Michael at
mb@developsense.com.

Sticky
Notes

For more on the following topics go to
www.StickyMinds.com/bettersoftware.

m Disfavored users
m Karl Wiegers

Which other users don’t we like,
and why don’t we like them? Is it
because they represent a threat to
our products or because we've dis-
appointed them in some way?

v

Follow the link on the StickyMinds.com
homepage to join the conversation.

www.StickyMinds.com

30...

You're
Looking

For n

Open Source

utomation
Solution?

DEVELDF |
EST M

. B013775360
WWW.ACULIS COM

SEPTEMBER 2007 BETTER SOFTWARE

866.4ACULIS

17





