Go with the Flow

by Michael Bolton

As Cem Kaner pointed out in a recent
talk, when Glenford Myers wrote his
seminal book The Art of Software Test-
ing, computing was much simpler.
Programs were smaller and slower, used
character-based interfaces, had only
thousands of lines of code, and contained
far fewer variables. Today, our programs
have millions of lines of code, thousands
of variables, and extensive interaction
with a multitasking, graphical operating
system (see the StickyNotes for more on
this topic). Most importantly, today’s
programs are object-oriented, event-driv-
than
batch-driven. The flow of a program can

en, and interactive, rather
be interrupted at any time, not only by
the operating system but also by the user
who might invoke any number of fea-
tures, functions, or services. Paths and
sequences of actions are less predictable
than ever before. Moreover, our pro-

of

application frameworks, third-party li-

grams depend on mountains
braries, and operating system code. How
can testers keep up? Flow tests help us
deal with this new reality.

Traditional test design often is based
on a focusing strategy: start from a
known, clean state; prefer simple, deter-
ministic actions; trace test steps to a
specified model, such as a use case; fol-
low established, consistent design
procedures; make specific predictions,
observations, and records; and make the
test easy to reproduce, perhaps even au-
tomate it. Tests based on use cases
emphasize focusing heuristics. These tests
target some specific behavior. They iden-
tify an actor—a person or system that
interacts with the product—and include
pre-conditions and post-conditions to tell
us what we need to start with and how
things should look when we’re done.
This approach works for relatively simple
testing tasks, where tests require high in-
tegrity, where we can anticipate local
symptoms of local problems, or when

Test Connection

we’re in a confirmatory process, demon-
strating that the system can work.

For more complex tests, a focusing
strategy becomes more expensive and po-
tentially more risky, and might blind us to
problems outside of our immediate field
of view. If we’ve been using focusing
heuristics, it might be important to diver-
sify and use defocusing heuristics in test
procedures: don’t start from a known,
clean state; prefer complex tasks and ac-
tions that aren’t predefined; don’t
constrain the test to a specific model;
question, vary, and even violate standard
procedures; look at the big picture, testing
without a specific observational mode or
predicted outcome in mind; and make the
test harder to pass while relaxing the em-
phasis on reproducibility. For these
purposes, flow testing often fills the bill.

In the Heuristic Test Strategy Model
(see the StickyNotes for more informa-
tion), “flow testing” means “one thing
after another after another...” Tests might
follow a specific path through the pro-
gram’s functions, tracking a piece of data
from cradle to grave, or long sequences of
actions without resetting the system. This
approach tends to be investigative, seek-
ing circumstances in which the system
might fail, motivated by a search for non-
local effects with respect to any given
cause. Flow tests may use both scripted
and exploratory aspects.

www.StickyMinds.com AUGUST 2007

In the agile world, builds of the prod-
uct are intentionally frequent to give
developers quick feedback on the effec-
tiveness and impact of a change, so unit
tests often (and appropriately) are de-
signed to emphasize speed over breadth
and depth. After we’ve integrated ele-
ments of the product, we do flow tests to
expose problems at the interfaces between
them or to identify data corruption that
occurs over time. Longer sequence tests—
complex scenarios or a long series of
short tests—model real-world conditions
in a way that shorter unit tests and inte-
gration tests may not.

Programs, functions, and objects typi-
cally start with variables in initial states
that eventually change. At least two kinds
of errors can come from this—the initial
state may be wrong, or some desired
change may not occur. However, these er-
rors may not become apparent until some
later time, when the program tries to read
or display the variable. Shared or global
variables can be more vulnerable than
other kinds of variables because they can
be (mis)accessed by any function at any
time. If there is a problem that happens at
random or unpredictable intervals, then,
generally, the longer the program has
been running, the greater the odds are of
the accident happening. Some might
argue “our developers would never use
global variables,” but we can neither

BETTER SOFTWARE 15

ISTOCKPHOTO



Test Connection

“Good end-to-end testing depends on breadth, depth,

variability of actions and data, and rich scenarios,

both plausible and implausible.”

know nor control if someone else does—
and our code inevitably interacts with
third-party libraries, device drivers, and
the operating system where vulnerabili-
ties aren’t visible to us. We can’t assume
that other people are living (or coding) up
to our standards.

Long-sequence, randomized, high-vol-
ume, automated tests can be particularly
good for shaking out reliability problems,
timing issues, resource contention, and
performance defects. All tests require or-
acles—trustworthy (albeit sometimes
fallible) means of recognizing problems.
High-volume automated tests in particu-
lar need high-speed oracles, ideally
provided by comparable but not identical
algorithms. In long-running tests, finding
the cause of a problem can be a chal-
lenge, so these tests also need traceability,
typically provided through detailed logs
that not only can be read and understood
easily by humans but that also can be
stored, accessed, and parsed easily by
tools and regular expressions. Log files
and scriptable interfaces to the product
make test automation much easier. Rapid
testers ask early and often for testability.

When I’'m testing an application inter-
actively, I might test flow by performing
many small, atomic tests without reset-
ting or closing the application. I also
might try to perform longer tasks, incor-
porating some kind of unusual, erratic, or
unpredictable behavior. I model the user
by changing my mind, backtracking, try-
ing to do things that are outside of some
notion of “normal” sequence. My em-
phasis isn’t on the volume of data that I
can drive through the system; I let au-
tomation handle that. Instead, I’'m trying
to make new observations, learn more
about the program, and improve my test
design. This means defocusing, surveying
the screen, welcoming productive distrac-
tion from rote behavior, looking for new
tasks, and inventing new ways to do rou-
tine tasks. All of these things require a
fundamentally exploratory approach.

I try to make intentional mistakes and

try to pay attention to my unintentional
ones. A particularly strong focus for hu-
man-performed flow testing is watching
for error-message hangover—failure to
clean up after some exceptional condi-
tion. “Error” and “exception” mean
“something that isn’t supposed to happen
(very often).” Consequently, it’s easy for
requirements analysts, designers, and de-
velopers to give error conditions a
psychological brush-off and to pay mini-
mal attention to handling the problem.

As in all tests, steps in end-to-end sys-
tem tests can be performed by machines,
humans, or some combination of the
two. The object is to follow the flow of
individual transactions and their ele-
ments from soup to nuts, adding power
to the test by combining increasingly
complex stories that interact with all of
the system’s components. An end-to-end
test for a retail organization might include
creating shopping carts that generate sales
orders that produce inventory movements
that trigger purchase orders that debit
and credit several accounts, while ac-
counting for warranty status, updating
appropriate databases, receiving items
from wholesalers at one regional ware-
house and moving items to another,
delivering purchased items to customers’
homes, having some customer reject de-
livery because goods were damaged in
transit, delivering replacement items from
existing inventory, and matching the cus-
tomer’s online warranty registration to the
shipped product (the replacement, not the
damaged one).

Automation focus tends to be on vol-
ume and performance; the human focus is
directed toward developing the scenario
and careful observation of the interfaces,
the results and the system state, using tools
and log files to observe things that might
otherwise be invisible. Good end-to-end
testing depends on breadth, depth, vari-
ability of actions and data, and rich
scenarios, both plausible and implausible.
It also depends on good models that cap-
ture the essentials and exceptions in the

www.StickyMinds.com AUGUST 2007

business process.

Simplicity in testing is a worthy goal.
Flow tests help to address the fact that
our applications run continuously in a
messy, complex, and human world. {end}

Michael Bolton lives in Toronto and
teaches heuristics and exploratory testing
in Canada, the United States, and other

SPEAKER

countries. He is a regular con-
tributor to Better Software

magazine. Contact Michael at
mb@developsense.com.

Sticky
Notes

For more on the following topics go to
www.StickyMinds.com/bettersoftware.

m Cem Kaner presentation
m Heuristic Test Strategy Model

Sometimes we see problems
where all the pieces are right,
but somehow they don't fit when
we put them together.
Got a story about that?
v

Follow the link on the StickyMinds.com
homepage to join the conversation.

Want to learn more about a great idea
or technique in this issue of
Better Software magazine?

The StickyMinds.com Discussion
Boards provide a great forum for
sharing ideas and conversing with
other StickyMinded people worldwide!
Ask questions. Give pointers.
Exchange messages with your
colleagues in the software testing and
quality engineering world. Or sit back
and read what your peers are saying
about a variety of subjects important
to software development at
www.stickyminds.com/forum.asp.

BETTER SOFTWARE 17





