
GET TOTHE SOURCE
SCM as a

testing solution

SAYWHEN
Defining what’s

“enough”

July 2007 $9.95 www.StickyMinds.com

The Print Companion to

For Rapid Testers, “risk” has at least
three interpretations. A risk might be “a
bad thing that might happen”—an error
or omission, like a missing requirement
or coding mistake. It might be conse-
quences—undesirable aftereffects of the
first kind of risk; examples include sys-
tem crashes, loss to the business, or an
unflattering article in the business section
of the newspaper. Finally, a risk might be
a chance that we’re prepared to take that
one of the first two risks won’t happen.
“We’re short on time, and few customers
still use Windows 2000, so we’ll take the
risk of not testing it.”

Sometimes in testing we find problems
that surprise us—that we didn’t antici-
pate at all. In risk-based testing, we try to
anticipate a problem and then test for it.
Risk-based test design is based on ques-
tions that begin “What if . . . ?” What
bad things might happen? What good
things might fail to happen?

Rapid Testers model the risk story in
four parts. There’s a risk when a victim
may be affected by some problem caused
by a vulnerability in the product that is
triggered by some threat. By thinking ex-
pansively about each part, we reduce the
possibility that we’ll miss an important
risk.

For this discussion, a victim is an
agent—a person, group, or system that
interacts with the system under test
—that suffers inconvenience, annoyance,
damage, or loss because of a problem.
General systems thinking reminds us that
there are many possible notions of who a
user might be and how certain users
might perceive the product or a problem
with it. A few years ago, I worked on a
banking application designed to be used
by bank tellers. Those tellers—the people
we thought of as “the users”—were cer-
tainly potential victims of software bugs,
but if those bugs caused delays for the
bank customers waiting in line, then
the bank customers were victims, too. If
the bank customers lost confidence in the

bank or left in droves due to slow service,
the bank’s shareholders became victims. If
coding and testing errors that enabled the
bug reflect badly on our reputations, then
we are possible victims of a problem. Ulti-
mately, a risk affects somebody—often
several somebodies.

For problem, I recently found G.F.
Smith’s definition: “an undesirable situa-
tion that is significant and may be
solvable by some agent, although proba-
bly with some degree of difficulty” (see
the StickyNotes for references). One way
to model risk is to consider quality crite-
ria. Quality is subjective—“value to some
person,” as Gerald Weinberg says. A
problem threatens that value for some po-
tential victim. If the problem doesn’t
matter, or seems to affect only unimpor-
tant people, the problem will be deemed
to be no problem. There may be substan-
tial business risk in declaring a group of
people to be unimportant. An expert
tester not only develops risk ideas and
scenarios that reveal the importance of a
problem but also searches for people who
might have been misclassified as unim-
portant.

A vulnerability is some weakness in a
system that could allow a problem to oc-
cur. Systems are bound to have flaws.
People specify them and people code
them. People are fallible and communica-

tion between them is more fallible still. A
vulnerability might be the result of a pro-
gramming error, an unexpectedly
incompatible library, a specification
weakness, or a misunderstanding of a re-
quirement.

Still, a vulnerability doesn’t matter
unless (or until) it is triggered. A threat—
some state or transition, whether arrived
at deliberately or inadvertently—turns a
vulnerability into a problem. A vulnera-
bility could hide forever in an area of the
code that is never accessed in testing or
production or that requires an improba-
ble set of variables to be in some state,
and we’d never know a thing about it.
Hackers might trigger a vulnerability de-
liberately, but well-meaning people could
trigger it inadvertently. When they’re
confused, enterprising users will often
say, “What if I try this?” If no one else
has tried that, the workaround might
work—or trigger a serious vulnerability.

In risk-based testing, we consider
variations of victim, problem, vulnerabil-
ity, and threat and make choices about
how—or whether—we’re going to test
for them. But the combination of varia-
tions of all four aspects is almost always
intractably large. Which potentional vic-
tims matter? For the ones that don’t
matter, why don’t they matter? What prob-
lems might harm or annoy potential victims?

Test Design with Risk in Mind
by Michael Bolton

14 BETTER SOFTWARE JULY 2007 www.StickyMinds.com

Test Connection

IS
TO

C
K
P
H
O
TO

“Solo efforts are OK, but the process is

much richer when other members of the

project community are involved.”

Test Connection

www.StickyMinds.com JULY 2007 BETTER SOFTWARE 15

In this column, I've focused
mostly on product risks.

What aspects of the project might
contribute to our risk model?

�

Follow the link on the StickyMinds.com
homepage to join the conversation.

Which problems might be tolerable, and
which ones would be catastrophic? What
principles or mechanisms allow us to recog-
nize a vulnerability in the program?How can
we trigger vulnerabilities in the test lab?

Try using a half-hour brainstorming
session to create a risk list. Solo efforts
are OK, but the process is much richer
when other members of the project com-
munity are involved. It’s good to create a
risk list early in the project, but since we
learn about the system and attendant
risks throughout development, it’s useful
to revisit the risk list later as a group ex-
ercise. Whenever we identify new risks,
we add them to the list.

Try looking at a structural diagram
showing objects, modules, or subsystems
and the interrelationships and dependen-
cies between them. Even if you ignore the
labels, you can bring important risks to
the surface: “What does this line mean?
What error checking happens on the way
into this box? What happens if the line
between these two things gets broken?
Does this arrow ever point the other
way? Could this bucket overflow?”

Try exploring the product, alone or in
pairs, emphasizing “testing to learn”
rather than “testing to find bugs.” Look
for information about how the product
works and how it might fail. Michael
Kelly has a useful mnemonic guide:
“FCC CUTS VIDS” (see the StickyNotes
for a link). Look at features, complexity,
claims, configuration, user types, testabili-
ty, scenarios, variability, interoperability,
data, and structure. Tour the menu op-
tions; perform actions via the mouse or
the keyboard; tour the folders in which the
application installs itself; and look through
the help file, tutorials, and supporting doc-
umentation.

The risk list can be used to generate
test ideas or to identify ways of address-
ing vulnerabilities before test design and
coding begin, or to guide exploratory test
execution, which is typically much faster
than writing and executing test scripts.

Most importantly, the risk list can help us
prioritize risks. What problem could end
up on the front page of the San Jose Mer-
cury News? Which risks might cause a
customer to abandon the product or to
talk to friends about the problem? What
problems have caused tech support calls?
What problems have we already seen but
become accustomed to? Quantitative
measures of risk might not be useful or ac-
curate; qualitative risk assessments might
be sufficient. One heuristic is to watch for
the cringe when a risk idea is discussed.

If we’ve done a good job of modeling
risk, we’ll probably have more test ideas
than we can act upon. That’s where the
third definition of risk comes in. Some
risks are sufficiently low compared to oth-
er risks, so we take a chance on not testing
for them. That’s OK; as Tom DeMarco
says, “If a project has no risks, don’t do
it.” {end}

Michael Bolton lives in Toronto and
teaches heuristics and exploratory testing
in Canada, the United States,
and other countries. He is a
regular contributor to Better
Software magazine. Contact
Michael at mb@developsense.com.

Sticky
Notes

For more on the following topic go to
www.StickyMinds.com/bettersoftware.

� References

