
Solve the Mystery of
Successful End-of-Project

Retrospectives

February 2007 $9.95 www.StickyMinds.com

The Print Companion to

THE MAGIC NUMBER

Three techniques for
testing with databases

COMPLEX CODE?

Get back to basics

The Case of the
Missing

Fingerprint

12 BETTER SOFTWARE FEBRUARY 2007 www.StickyMinds.com

Test Connection

Regression—the notion that the quality
of our product is backsliding in some
way—is one important motivation for
testing. Regression tests are those that
may help us identify failures associated
with changes to code that we believed
was working before. A regression test
happens in response to a change. That
change might be a new feature or a bug
fix in the software that we’re currently
developing, but it might also be a
change in the platform—a supporting
library, component, tool, or anything
that is outside the scope of our current
project. We can check for regression at
any level of the project—from the smallest
unit test to an end-to-end system test—
but that doesn’t mean a regression test
must be a repeated or automated test.

When we test for regression, we first
try to catch things that have been broken
unintentionally by some change. Second
(and, in my experience, sometimes
forgotten) is that we want to take any
opportunity to find new problems.
Third (and almost always forgotten) is
that we want to identify opportunities
to improve our test design.

I’ll equate unit tests and developer
tests here (even though one might not be
the other), and I’ll define a unit as “the
smallest bit of code that we’re interested
in at the moment.” In a test-driven
development (TDD) model, a programmer
writes a TDD test, which typically contains
a single assertion, before writing the
code that allows the test to pass. Then
the programmer writes the simplest code
that will run successfully with respect to
the new test and all previous tests.

Once the code passes that milestone,
the development work with respect to
that test is considered finished. If the
code needs to do more, the programmer
repeats the cycle—but in each round of
test-then-code, not only should the most
recent test pass but prior tests should too.
Failure in an old test indicates an unex-
pected consequence of some change and
requires immediate investigation. Until

unit tests is typically very low compared
with the cost of developing higher-level
system tests. Passing unit tests provide
reassurance; failing unit tests are valuable
in that feedback is immediate, locating
the problem is easy, and little investigation
is required.

When we put two or more units
together, we’re creating a new system that
is capable of performing more elaborate
work. As much as we’d like to believe
that we can understand a system, increas-
ing complexity may result in surprising
behavior. At higher levels, we need tests
that are more complex and based on
more models than the unit tests are. People
have a lot of names for these kinds of
tests, such as integration or acceptance
tests. I’m going to call them system tests;
although they may or may not be testing
the whole system, they do test some
systems of two or more units.

At the unit level, test coverage tends
to be based on structural and functional
models. At higher levels of the system,
other coverage models—data, platform,
operations, and time—come into play.

the unit test runs successfully for the
first time, it’s a milestone to be achieved;
thereafter, it’s a change detector (as Cem
Kaner calls it) or a regression test.

However, there’s a cognitive issue. A
milestone is usually focused on accom-
plishment—not on risk. A TDD test is a
demonstration that the code can work,
not a guarantee that it will work in a
given context. Some change in the context
or some unconsidered aspect could cause
the program to fail. At a milestone, we’re
provisionally finished coding; we’re not
likely to be finished testing. This might
be a good time for developers to add extra
unit tests that more aggressively challenge
the code and our understanding of it,
and to collaborate with a contrary, risk-
focused tester. Take a critical point of
view, focusing not on how the unit
should work but on how it could fail,
especially at the interfaces between it
and the rest of the system. In addition to
the extra confidence that we gain by de-
veloping and running these new unit
tests, we’ll garner extra change detectors.

The cost of developing simple, focused

G
ET

TY
 IM

A
G

ES

One Step Back…Two Steps Forward
by Michael Bolton

www.StickyMinds.com FEBRUARY 2007 BETTER SOFTWARE 13

Moreover, as we build functionality into
the system, we increasingly can test for
quality criteria that must be satisfied.
Unit tests tend to focus on capability;
system tests address reliability, usability,
security, scalability, performance, instal-
lability, and compatibility. Oracles for
these tests are sometimes more subjective
and more human-oriented than can be
modeled easily on a machine. That’s
OK, because humans matter; programs
are generally ways of fulfilling some hu-
man task. Programming an example of
that task as a sufficiently complex test
could be on the same order of difficulty
as programming the application under
test. As a skilled tester learns more
about the program and the task, he will
recognize new risks and new test ideas
that he can apply; a machine won’t.

Can we ever repeat a test? To some
degree, no. We’re never going to be able
to repeat all the elements of a test that
happened at a given time. But we may be
able to reproduce some aspects of the test.
When someone says “I want to repeat
that test,” what he really means is “I
want to repeat something I think might
be important about that test.” The test
idea—the motivation to test for a specific
risk—might be the most important
thing; repeating other aspects of the
test—the data, the order of operations,
the platform, the scenario—might be
less important. Varying those things can
expose problems that existing tests
might be missing, and that gives us a
chance to improve the design of existing
tests or our test strategy. Cem Kaner
gives a compelling metaphor: Imagine
that a border guard is a tester and the
person wishing to cross the border is a
requirement. Would you really want to
limit that guard to asking the same ques-
tions every time that person tried to enter
the country—especially when something
about his appearance had changed?

Consider what is gained and lost in
repetition. A suite of repeating automated
integration- and system-level tests might
have significant value, but what does it
cost to develop and maintain them as
the program under test changes? Tools
can help us see things that we would
otherwise miss, and automation can easily
extend our ability to vary some data set.

But developing automation also incurs
opportunity cost, taking time away
from new tests that we could run and new
discoveries that we could make. At the sys-
tem level, we don’t want merely to check
for regression; ideally, we’d like to per-
form tests that are capable of exposing
both regression and new problems.
When modeling the task as a program
or script is both straightforward and
worthwhile, when observations and
pass/fail rules are simple, and when a
data set can be varied and checked easi-
ly, then it might be a good idea to auto-
mate a test and repeat it. When we low-
er our investment in developing and
running automated system-level tests,
we can target specific problems more
flexibly and increase our investment in
variation.

If we want to ensure that things don’t
break, we need repetition in some of our
test effort. So where do we do it, and
how do we keep the value high and the
cost low? As it turns out, we may already
have a ready source of repeating auto-
mated tests. The unit tests, as change
detectors, are the first line of defense
against backsliding, and they provide
simplicity and repeatability. If we have a
good set of well-crafted unit tests, we
can afford to spend time running more
manual and more varied tests at the
system level. {end}

Michael Bolton lives in Toronto and
teaches heuristics and exploratory testing
in Canada, the United States, and other
countries worldwide as a consultant and
co-author of James Bach’s Rapid Software
Testing Course. Michael is also program
chair for the Toronto Association
of System and Software Quality.
He is a regular contributor to Better
Software magazine. Contact Michael at
mb@developsense.com.

Test Connection

If you are a strong advocate of
high-level test automation, consider

some things that automation tests poorly.
If you are an automation skeptic, think of

things that automation could do well.
Any epiphanies?

Follow the link on the StickyMinds.com
homepage to join the conversation.

�

