
Better Designs Through
Problem Redefinition

December 2006 $9.95 www.StickyMinds.com

The Print Companion to

LET’S DO THE NUMBERS

The annual salary survey
results are in!

SEMPER FI

Lead like a US Marine

Changing
The Hand

You’re Dealt

14 BETTER SOFTWARE DECEMBER 2006 www.StickyMinds.com

Test Connection

The specification was clear: “Use simple
rounding for transactions where the
calculated exchange rate results in a
difference of exactly one-half cent.” Yet
for certain values—$410.2050, for
instance—the software rounded the result
down to $410.20, instead of up to
$410.21 as I would have expected. I
wrote myself a note. At lunch, I chatted
with Chris, a tester of financial systems.
“Rounding down on a half-cent? Look up
‘significance arithmetic’ on Wikipedia.com
to get started,” he said and grinned.

After lunch, I looked up “significance
arithmetic” and found the “round-to-
even” rule, also known as “bankers’
rounding.” Banks use it because rounding
up tends to favor one party over another.
The code was probably right, and the
spec was probably wrong. At the next
morning’s Scrum, I explained my obser-
vation, asked if anyone had heard of
bankers’ rounding, and received blank
looks. “I think the foreign exchange
module uses it—could someone check
that out?” Eric, the development lead,
agreed to look. He didn’t see anything
unusual in the code—it used a normal
rounding function. Later that day, he
spoke to Dale, a developer in another
group who had worked on the original
module. “Oh yes,” she said. “Visual
Basic’s round() function uses bankers’
rounding. That’s intentional. Look it up
in Microsoft’s knowledgebase.” At the
following day’s Scrum, our customer
representative agreed to check with our
three largest customers. The day after that,
he confirmed that the software was right.
We updated the functional specifications.

In all my consulting work, I’ve never
heard someone say, “We’re completely
happy with our requirements documents,
and we would do nothing to change
them.” I do hear that documents are
incomplete, outdated, self-contradictory,
or just plain wrong. In many of the testing
organizations I visit, people ask for help
in improving their test design, saying that
they’ve been relying on requirements

identified in RFC 123666”) or to other
artifacts (“Version 16 of this product
shall perform in a manner substantially
similar to Version 15, except where
specified here”).

References may be helpful, but
they’re never perfect. They’re heuristic
devices—fallible methods for solving a
problem—that represent an attempt by
some person to capture in some medium
some ideas that someone had about
what someone’s requirements are or
were. Requirements have changed on
every project I’ve worked on, while
requirements documents changed later,
if ever.

References are always incomplete to
some degree. A complete reference to a
product would have to describe the
system—everything germane to the use
of the program in its business context.
Some testers and managers demand a lot
of reference material, perhaps believing
that the testers are inexperienced or
unable to use observation and judgment.
This is insulting to the testers if the belief is
wrong and a serious risk if the belief is right.
Experience, training, and mentorship can
help to address the problem, but thicker
specifications won’t go far to make up
for poor testing skills.

documents, functional specifications, or
use cases as the sole sources of their testing
ideas. At least, that’s what they say. In
fact, I observe that they use other
sources of information, too, but not
necessarily consciously.

Skilled testers strive to recognize these
other sources and use them effectively for
test design, because the requirements aren’t
the same as the requirement documents.

James Bach says that requirements are
a conversation between what we want
and what we can have. He says we
develop our understanding of require-
ments by considering reference,
inference, and conference. The process
isn’t linear; we use references, draw
inferences, and join conferences in no
particular order. At any time, just as in a
game of Rock, Paper, Scissors, an inference
can challenge a reference, which can be
confirmed by a conference and then
overruled by another reference.

Reference
References are things that we can point

to—documents, mock-ups, prototypes,
or models. They may contain tables,
pictures, diagrams, maps, and so on.
References can refer to other references
(“This product shall use the protocols

Rock, Paper, Scissors
by Michael Bolton

www.StickyMinds.com DECEMBER 2006 BETTER SOFTWARE 15

Inference
Skilled testers build on references by

using inferences to refine requirements, aid
test design, choose oracles, and identify
risks. Inferences come from experience,
systems thinking, heuristic models, and
critical reasoning. From experience, we
infer that clicking on a close button will
close a window. Our general models
help us to infer that there will be numerous
users with different goals and tempera-
ments and that there is risk in failing to
fulfill the goals. When we read the
references critically, we can infer that an
author might have left out something
important to a constituency other than
his own or that he might have been
mistaken or misinterpreted. Paradoxically,
inexperience can be helpful; naïve infer-
ences can lead to interesting test ideas
since many of the product’s users may be
naïve about it too.

Diagrams present great opportunities
to build inferences about risk. When we
see a diagram, we can certainly pay
attention to what it tells us, but we
should infer that its author is intentionally
leaving out far more information than
the diagram shows. Point at any diagram
and ask, “What if the data coming in
here were bad? What would happen if
this connection weren’t available? What
error checking happens in this process?
What would happen if this component
were replaced by a ‘compatible’ update?
How many of these transactions can this
unit handle over a given time? What if
we overloaded it?”

When we test, we compare the program,
our references, and our inferences. As
we operate, observe, and evaluate the
program, we generate more inferences
that aren’t discussed in the reference
or that identify possible errors in the
reference. Perhaps since the reference was
produced, some specified requirement is
now insufficient to satisfy the customer. We
may observe that the program’s behavior
disagrees with an inference, but then
check the reference and decide to reject the
inference. Maybe the program’s behavior
disagrees with the reference. That’s a
bug, assuming that our references and
our inferences agree—but maybe they
don’t. So how do we decide whether
there’s a bug or not?

Conference
We work out the decision in conferences.

Conference is the process of exchanging
and refining understanding about the
system between two or more parties. We
discuss inferences, references, and observa-
tions, generally with some person in
authority—a program manager, customer
representative, development manager, or
business manager (some organizations
may combine these roles). Conference is
a conversation—a chat face to face, on the
phone, in an instant-messaging system, or
in an email. Like inference, the flow of
conference is typically exploratory; we
learn outside of a predefined formal
structure. Agile processes take extra
advantage of conference by minimizing
written documentation in favor of
working software negotiated with an
onsite customer. That reduces the need
for reference, exploits inferences, and
makes feedback time short.

Unlike a game of Rock, Paper, Scissors,
though, one option ultimately prevails:
conference with the person who matters
most. A reference is simply a stand-in
for some person, and an inference is some
person’s conclusion. We may disagree on
what constitutes a bug and whether it
should be fixed, but the game is decided
by the project owners. That’s why
they’re paid the big bucks. {end}

Michael Bolton lives in Toronto and
teaches heuristics and exploratory test-
ing in Canada, the United States, and
other countries as part of James Bach’s
Rapid Software Testing course. He is
also program chair for the Toronto
Association of System and Software
Quality. Michael is a regular contributor
to Better Software magazine. Contact
Michael at mb@developsense.com.

Test Connection

How have you used reference,
conference, and inference

to increase your understanding
of requirements?

Follow the link on the StickyMinds.com
homepage to join the conversation.

�

