
July/August 2006 $9.95 www.StickyMinds.com

The Print Companion to

BUILD A BRIDGE

And bring agile
to your enterprise

PAGE 26

FOR WHAT IT'S WORTH

The true value of testing
PAGE 32

PAGE 18

Techniques to Sweeten the
User Experience

THE
MANY
LAYERS
OFAJAX

THE
MANY
LAYERS
OFAJAX

12 BETTER SOFTWARE JULY/AUGUST 2006 www.StickyMinds.com

Test Connection

The Factors of Function Testing
by Michael Bolton

In the previous issue, I introduced the
nine test techniques that James Bach
names in his Heuristic Test Strategy
Model (HTSM). In this column, I’ll
focus on function testing, which is
perhaps the most widely applied of
those techniques.

In function testing, we test what the
program does. The basic idea is to identify
each program function and then test that
each does what it’s supposed to do—and
doesn’t do anything else. Sounds easy,
doesn’t it? But there are catches.

One catch is that there may be many
ways to invoke a given function. For
example, I can make Microsoft Word
print a document in the following ways:

• Pressing Ctrl-P
• Choosing File and then Print

from Word’s main menu
• Right-clicking a Word document

in Explorer and choosing Print
from the context menu

• Calling Word’s Print function
from an application that uses
Visual Basic for Applications

As an exercise, consider additional
ways in which Word’s print functions
can be triggered; don’t stop until you get
to at least twelve. Next, consider some
function within an application that you
might test and how many ways in which
that function might be invoked.

Function testing needs oracles—prin-
ciples or mechanisms by which we
recognize a problem. An oracle may be
a reference document that defines some
expected answer. It may be a reference
program that we can run before or after
a test to compare with the result of
some function. It may be a heuristic
principle—when we click a button that
says Cancel, we expect the current
action to stop or the current dialog to be
dismissed. Rapid Testers also use “live
oracles,” such as interviewing a busi-
nessperson who sits with us as we exercise
functions in the program. The conversation
combined with operation and observation

potential for error. Automated unit tests
for each function, written as the code itself
is written (or in the case of test-driven
development, before it is written), will
provide at least some assurance that
each function fulfills some requirement to
some degree. At the unit test level, oracles
tend to be mechanistic, based on a single
principle that the developer had in mind
when she wrote the function.

In my experience, developers write
the unit tests; testers don’t often get
involved at this level of testing. That
may be OK, as testers and developers
have different motivations. The usual
goals of developers’ function tests are to
confirm that the function works and
that changes don’t break existing func-
tions. Such tests are designed to be quick
and frequent, trading thoroughness and
variability for simplicity and repeatability.
When testers perform functional tests, the
task is closer to the user’s task; the focus
is more investigative, looking for excep-
tional cases and unanticipated behavior.
This requires broader coverage and
greater variation than automated unit
tests and can involve harsh tests designed

is a very powerful test technique.
I like to identify a function as “some-

thing that happens in response to
something else happening.” Some functions
seem to be triggered by the user. I say
“seem to be” because the user performs
some action—typically a keystroke or a
mouse click—but that action doesn’t
reach our program directly. A keystroke
triggers a chain of events—a message
from the keyboard controller, an operating
system interrupt, a handler within the
operating system (which itself may be
interrupted), and a message sent from
the operating system to our program.
After that message arrives, our program
may take many steps itself to process
this function. Each of these steps can be
considered a function in its own right.

There is a powerful argument in favor
of testing functions at the earliest time,
at the lowest level, and to the greatest
extent that is feasible—what developers
call “unit tests.” Units, like functions, vary
in size and scope. I’ll define “unit” here
as “the smallest part of the program
that we currently care about.” Each
arbitrarily small sub-function holds the

G
ET

TY
 IM

A
G

ES

14 BETTER SOFTWARE JULY/AUGUST 2006 www.StickyMinds.com

to probe for weaknesses in the system
by undermining it. Divergent perspec-
tives are valuable; testers and developers
can learn a lot from each other. Elisa-
beth Hendrickson and Jonathan Kohl
speak and write compellingly about
how to foster collaboration to promote
better unit testing (see the StickyNotes
for more information).

Functional units form the building
blocks of higher-level functions, where
the program is exposed to a wider vari-

ety of data, platforms, operational pro-
files, and timing relationships. Rapid
Testers use the Product Elements and
Quality Criteria sections of the HTSM
to inspire test ideas, and we apply them
by looking at the program through the
lenses of structures and functions. Another
way to identify functions at a variety of
levels is to use James Whittaker’s ideas
about the four users of the program—
human users, the operating system, the
file system, and application program
interfaces (see the StickyNotes for more
about the four program users).

To build a functional model of the
program at the very highest level, try to
identify all the things that a user can do.
Look at every part of the screen, trigger
pop-ups and dialogs, select options within
them, choose items from drop-down
menus, drag and drop, enter text, perform
calculations, and trigger field updates.
Check that things can be accomplished
by the keyboard, the pointing device, or
more indirect means like an API.
Choose oracles to determine which input
methods should be supported in a given
situation. Programs usually run on a
variety of platforms (to Rapid Testers, a
platform is everything upon which our

developers could make. At higher levels,
they might look for business risks and
problems associated with fulfilling the
user’s task.

Finally, we don’t have to depend
upon function tests alone. Other test
techniques exercise a program’s func-
tions while addressing risks that func-
tion tests might miss. Testing is greatly
strengthened by a diversified test strate-
gy, so do perform plenty of function
testing, but don’t leave it at that. {end}

Michael Bolton lives in Toronto and teaches
heuristics and exploratory testing in Canada,
the United States, and other countries as part
of James Bach’s Rapid Software Testing
course. Michael is also program chair for the
Toronto Association of System and Software
Quality. He is a regular contributor to Better
Software magazine. Contact Michael at
mb@developsense.com.

program depends, but which is outside
the scope of our current project). Some
functions in our program may be au-
tonomous, others may simply request a
service from the platform, and still others
may call a set of services while doing
some work between each call. Some plat-
forms may interpret requests differently,
which requires not only that we test mul-
tiple functions but also that we test them
on multiple platforms.

For each function, observe not only

output but also outcome—a useful
distinction Boris Beizer makes in his
book Black Box Software Testing. Output
is the immediate, apparent result of the
function that we’re observing (e.g., the
answer to our primary question, data
that appears in the empty field, the
printed document). Outcome is some-
thing much more than that; it’s the
entire state of the system after we’ve
tested the function. Some functions have
no discernable output, but certainly
have an outcome. Sometimes we want
to test to ensure some change happens
to the system state, while in other cases
we want to make sure that there’s been
no effective change. Use tools to identify
outcomes that might otherwise be invisi-
ble. For Windows, I’ve found the freeware
SysInternals tools to be particularly handy
for monitoring the file system, the
registry, and the process table.

Identifying and testing every function
in a program of any significance is effec-
tively impossible because of the number
of functions, the variety of data we can
use, and so on. So how do we choose
which function tests to run? One way is
to consider risk. At low levels, function
tests might look for coding errors that

Test Connection

Don’t Stop Now!

Log on to StickyMinds.com and join
Michael Bolton and your peers in a
conversation about this topic. At the

end of the digital column, add your views
or just read what others have to say.

Sticky
Notes

For more on the following topics, go to
www.StickyMinds.com/bettersoftware

� More on Elisabeth Hendrickson and
Jonathan Kohl

� James Whittaker's four users of
a program

Outcome is something much more than that;

it’s the entire state of the system after we’ve tested

the function. Some functions have no discernable

output, but certainly have an outcome.

