
S I X P R I N C I P L E S

TO BENEFIT YOU AND YOUR AGILE ORGANIZATION

June 2006 $9.95 www.StickyMinds.com

The Print Companion to

IT'S ELECTRIC
A static analysis tool

to energize your code
PAGE 18

THE OLD
WITH THE NEW

Work with all the tools
in your toolbox

PAGE 28

PAGE 24

14 BETTER SOFTWARE JUNE 2006 www.StickyMinds.com

Test Connection

Test Patterns
by Michael Bolton

In this series, I’ve focused on the parts of
James Bach’s Heuristic Test Strategy
Model (HTSM) that help us generate test
ideas. For the next several columns, I’ll
discuss how to exercise these ideas using
test techniques.

A test technique is a general pattern
describing what we do when we test. We
start by modeling the test space. We then
determine coverage, oracles, and activities.
We configure, operate, and observe the
system under test, and finally we evaluate
the result. Sometimes these tasks happen
so quickly and intuitively that we don’t
even notice we’re performing them.

In this column I’ll summarize the
HTSM’s nine categories of techniques
for testing systems. Notice the term
“systems” rather than “programs.” The
former, more general term allows flexibility
in modeling what we have to test, from a
single line of code to a functional module,
an application, or a suite of interacting
applications and the platforms on which
they work. The scope of the effort affects
the techniques we choose and the ways in
which we use them.

Function testing involves identifying each
function and then testing it independently.
A function causes the system under test to
exercise some behavior, either changing
or maintaining the system’s state. The
object is to ensure that each function
does what it should, but also that it doesn’t
do what it shouldn’t. For each function,
we need a reliable oracle—a principle
or mechanism that will allow us to
recognize a problem.

Function testing is good for identifying
the capabilities of a system, but the
technique has weaknesses, too. First,
unless we choose our models carefully,
the number of functions in a system
could be intractably large. To be effective,
we need to make pragmatic choices about
the scale of our functional tests. Second,
function tests are intended to test each
function in isolation, but some of the
riskiest areas of any system are in the
interactions between functions. Third,

the number of tests we believe we need,
but some classifications don’t have clear
linear boundaries. To do domain testing
well, we must develop skill at dividing and
conquering the data and at identifying risk.

Stress testing is the process of
overfeeding or starving the system, or
both. This includes overwhelming the
system with input, tasks, or users, or
removing resources like memory, disk
space, network bandwidth, or connectivity.
The system under test can be anything
from a single input field to the entire
business process. We use stress testing to
better understand the capacities and
limitations of the system, looking for
bottlenecks, constraints, and dependencies.
The goal is to fix intolerable weaknesses
in the program and prepare for and
mitigate the tolerable weaknesses.

Flow testing involves running the
system without halting or resetting it.
When designing a system, we typically
simplify by describing single transactions
or events in isolation from each other.
Flow testing introduces the system to a more
realistic, complex world, where transactions

some defects may depend upon exercising
a function more than once.

Domain testing focuses on clarifying
and simplifying the testing effort by
classifying things associated with the
system. Identifying equivalence class-
es—groups of things that we deem
interchangeable for the purposes of a
given test—is the key task in domain
testing. Practically anything to do with
the system—input and output data,
platforms, peripherals, users, functions—
can be classified by some criterion. Good
domain testing involves selecting items
from the identified classes such that we
cover the territory (e.g., normal data
values vs. exceptional data values,
representative platforms vs. unusual
platforms, or expert users vs. novice
users). If we observe clear divisions
between classes in defined ranges, such
as elements on a number line, we might
test at the boundaries between them,
where some theories of error suggest
that mistakes are most likely to occur
and easiest to detect. Boundary analysis—
a subset of domain testing—may reduce

G
ET

TY
 IM

A
G

ES

www.StickyMinds.com JUNE 2006 BETTER SOFTWARE 15

Test Connection

happen in sequence, concurrently, or with
interruptions. Good flow testing doesn’t
decompose the system as function testing
does, or undermine it as stress testing
does. Instead flow tests model realistic
system operation, ensuring that things are
done correctly and in the right order.

With scenario testing, we test to a
compelling story about the system and its
users. Powerful scenarios motivate interest
and empathy. Scenario tests include use
cases; user stories; the birth, life, and death
of a piece of data within the system; and
soap opera tests, which posit highly
improbable but possible scenarios. Scenario
testing tends to find more business-facing
bugs than developer-facing bugs.

In claims testing, we seek what anyone
(a requirements author or marketer) or
anything (a help file or a shrink-wrapped
box) says about the system, and we test that
claim’s validity. Requirements documents
and specifications are the most obvious
sources, but we can also test claims
made in emails and conversations, sales
and marketing materials, end-user
documentation, and tutorials. Some claims
might be inaccurate, but if we identify where
the claim and the system are inconsistent,
the project team can fix one or the other.

User testing tells us to test with real
users or real-user models. A user, in
Rapid Testing parlance, is anyone who
might use the system or have an interest
in the test effort. I regularly run an exercise
in which Rapid Testers try to identify all of
the project’s user roles; we don’t stop
until we reach thirty. We tend to focus our
modeling on end-users (or their managers or
customers), but we might also perform tests
to serve the interests of the help desk,
training staff, or chief financial officer.
We’ll also perform some security testing
because black hat hackers are potential
users (or abusers) of the system.

Risk-based testing posits the harm
that could come to some person if a
threat were to expose some vulnerability
in the system; we recognize or imagine a
risk and perform tests to reveal it. I’ve
found three useful ways to generate
risk-based test ideas:

• Consider something that could go
wrong, such as a programming error
or an ambiguous requirement.

• Contemplate the consequences of

something going wrong, such as a
phone call to the help desk or a
front-page story in the San Jose
Mercury News.

• Determine what the development
organization is prepared to risk
(e.g., “A bug fix this late might have
undesirable side effects; we’ll risk
leaving it in”).

Automatic testing allows us to run
a test zillions of times or in a zillion
variations. The principal virtues of
automatic testing are speed, precision, and
repetition. However, test automation is
software development, which can be tricky
and expensive. We should balance the cost
of repetition with the value of the problems
it finds. Some tests we run repeatedly;
others aren’t even worth running twice.

The boundaries between techniques are
sometimes blurry, and our definitions are
somewhat open. When the name of a given
technique suggests multiple interpretations,
Rapid Testers try to use as many interpreta-
tions as possible to create more diverse tests.

I’ve noted in previous columns that
coverage is the extent to which we’ve tested
the system according to our mental models.
Each test technique in the HTSM affords
us a different way of modeling the product.
Each technique is a heuristic—a fallible
method for solving testing problems.
No single technique can reveal all of the
information that we seek about a system,
but a variety of techniques will reveal more
bugs—and more varieties of bugs. {end}

Michael Bolton lives in Toronto and teaches
heuristics and exploratory testing in Canada,
the United States, and other countries as part
of James Bach’s Rapid Software Testing
course. Michael is also program chair for the
Toronto Association of System and Software
Quality. He is a regular contributor to Better
Software magazine. Contact Michael at
mb@developsense.com.

Don’t Stop Now!

Log on to StickyMinds.com and join
Michael Bolton and your peers in a
conversation about this topic. At the

end of the digital column, add your views
or just read what others have to say.

