
November/December 2005 $9.95 www.StickyMinds.com

PULL SOME STRINGS
Metrics that inspire change

PAGE 34

ONE FIX AT A TIME
Put an end to

context switching
PAGE 50

The Print Companion to

Brushing Up
On Functional Test
Effectiveness PAGE 26

Imagine that you’re testing part of an
application. It’s a simple piece of business,
one that adds two single-digit numbers
together. Sound implausible? It would
have sounded that way to me, too, until
children arrived in my life, and with them
the prospect of using educational software.

Somewhere, someone is testing a
Web-based application for kids in which
the player’s character hands a number to
a bunny and hands another number to a
beaver, and then the bunny and the
beaver carry their numbers to a wise old
owl, who tells them the sum and displays
it on his blackboard. The developers
have created unit tests that show that the
adding function adds single-digit
numbers and calculates the result
beautifully. They tried one plus one and
got two; two plus two and got four. Nine
plus nine returned eighteen. Even zero
plus zero returned zero. There’s not
much work for a tester to do here—or is
there? When the question is “What is
two plus two?”, how could “four” be an
unsatisfactory answer?

As I’ve mentioned before, one of the
biggest risks in testing is to assess a
product from an insufficient number of
perspectives. James Bach’s Heuristic Test
Strategy Model (HTSM), which I’ve
introduced in previous columns, reminds
us of different ways of looking at the
product. Last time, we modeled the
product by its elements: Structure, Function,
Data, Platform, and Operations—SFDPO,
or “San Francisco Depot.” This time, we’ll
look at quality criteria, particularly the
ones that are likely to be important to the
customer. (There are criteria that
are important to the organization
producing the software, too; we’ll deal
with those next time.) To remember the
customer-facing quality criteria, we think
of CRUSPIC—Capability, Reliability,
Usability, Scalability, Performance,
Installability, and Compatibility.

Some testing authorities claim that all

are heuristic—fallible, and subject to being
overruled by more powerful heuristics in
a given context. Yet another trap is to
overemphasize capability tests, which are
mostly functional in nature. For a product
to be successful, it must be successful in
aspects other than the functional ones.
These are sometimes called “non-
functional” criteria, which is about as
confusing a term as I can imagine—“Yes,
the non-functional stuff works fine!”—so
I like to take Cem Kaner’s lead and call
these attributes “parafunctional.” Capability
is primarily a functional criterion; the
other quality criteria under the CRUSPIC
acronym are mostly parafunctional.

Reliability is all about our ability to
trust the program to perform the things of
which it is capable. A piece of educational
software is less than perfectly helpful if it
produces an incorrect result or a crash,
even if it does so only occasionally.
Reliability questions include: Does the
program perform consistently? Are its
results accurate with respect to some
oracle? Can we depend on the program
to perform its intended function without
introducing side effects? Does it cause
data corruption, intermittent interruptions,

of the requirements for a program should
be specified in advance, but Rapid Testers
believe that it would be impossibly
prescient to capture on paper everything
that could constitute or compromise the
quality dimensions for a program. So as
we operate the product and think about
the domain in which it will work, Rapid
Testers continually cycle through these
attributes, looking for weaknesses, making
observations, and asking questions.

Capability has traditionally been the
principal focus of testing. If the product
can’t serve its intended purpose—if it
can’t add two plus two at all—it’s clearly a
dud. The primary questions around
capability are: What is the job that the
program is expected to do? Can it do
that job? Capability is something for
which our oracles—principles or mecha-
nisms by which we recognize a problem—
are typically specific, well understood,
or deterministic.

Still, there are traps in capability testing.
One trap is that we might be inclined to
check that the program does what it’s
supposed to do, while failing to check
that the program doesn’t do what it’s not
supposed to do. Another trap is that oracles

22 BETTER SOFTWARE NOVEMBER/DECEMBER 2005 www.StickyMinds.com

Test Connection

More Than One Answer;
More Than One Question
by Michael Bolton

G
et

ty
 Im

ag
es

Test Connection

24 BETTER SOFTWARE NOVEMBER/DECEMBER 2005 www.StickyMinds.com

or crashes? The HTSM also puts security
under the reliability banner, so we would
ask authorization questions: Does the
program permit access to its capabilities to
the people who are authorized to use it?
Does it forbid access to those who are
not authorized? We would also ask
authentication questions: Does the
program get confused over who’s who?

Even when there’s nothing functionally
wrong with the program, it can suffer
from Usability problems. Our program
might add two and two like a champ,
but suppose that, due to a design
misunderstanding, the owl writes the
numbers in chalk on a whiteboard?
Suppose that it’s unclear that the player’s
character needs to hand the numbers to
the bunny and the beaver? Suppose that
the drop targets for the numbers are
so small that a child has a hard time
manipulating the mouse? In general:
What might annoy, frustrate, or stymie
any person, thing, or program that might
try to use our product?

Usability has at least two interpretations:
One is ease of learning, and the other is ease
of use. Sometimes one of these attributes is
compromised in the service of the other.
An application that I once worked with
was an order-entry system designed for
waiters in a restaurant. New users of that
application often complained that it was
hard to learn, but after a few weeks of
practice, they swore they would never
happily use another system. We’ve
heard the same kind of debate from
command line users and GUI aficionados;
sadly, the discussion is usually oblivious
to the needs of a specific user performing
a specific task.

Usability is often controversial
because it’s seen to be subjective and not
quantifiable. Rapid Testers don’t see
anything wrong with subjectivity. The
key to reporting subjective problems is
the ability to articulate them clearly and
to acknowledge the ways in which they
might pose obstacles for some users,
while supporting others. Context matters.
In the case of an educational program,
we’re bound to ask if the program is
suitable for the age group to which the
product will be marketed. As testers, we
don’t make the final decisions; our job is
to provide information to management

and to try to be as thorough and as inclusive
as possible.

Scalability is related to how a program
behaves as its sandbox gets bigger. Our
program might add two and two perfectly
in the lab with only one person testing it.
But will the application continue to
function when hundreds or thousands of
kids are logged in? When we add
application servers?

One of the symptoms of a scalability
problem is a decline in Performance.
Questions about performance can easily
demonstrate a weakness in capability
testing. The answer to What is two plus
two? might be entirely correct, but if the
answer takes three minutes to arrive, we
might suspect something abnormal. On
the other hand, we might also suspect a
problem if performance were too quick.
If the calculation were requested from
Earth, to be performed on a Mars lander
eight light-minutes away, we would not
expect an answer to return for at least
sixteen minutes.

A piece of software does no good if it
won’t work on a user’s machine, so we
ask questions about Installability. This
covers not only the installation of the
program, but the new user’s first
encounter with it. As the commercial says,
“You never get a second chance to make
a first impression.” Were all of the
components installed properly onto the
user’s machine? With the right defaults?
In the right language? Was anything else
installed inadvertently? How does the
program cope with older versions of itself?
If the user decides to uninstall, can the
product be removed cleanly? Is the
user’s data safe from an overly eager
uninstallation routine?

Even if we’re not dealing with kids’
software, “plays well with others” is
usually an important quality dimension.
Compatibility requires us to consider

how the program interacts with other
programs and with its platform, which
we defined expansively in the last column
as “all of the aspects of the product—and
the system that surrounds it—that are
not under our control.” (That’s another
inclusive definition; by defining things
this way, we welcome expansions and
extensions to traditional notions.) So,
does the product introduce instability on
the system? Is it vulnerable to side effects
from other products?

A lot of the precepts of Rapid Software
Testing aren’t terribly new. Instead, they’re
important ideas, wrapped in mnemonics
and governed by heuristics that expert
testers have been using forever. We’ve
been reminded for years to test for the
“-ilities.” Rapid Testing allows us to put
a handle on the things that we’ve done
and thought about all along. {end}

Michael Bolton lives in Toronto and
teaches heuristics and exploratory
testing in Canada, the United States,
and other countries as part of James
Bach’s Rapid Software Testing course.
He is the program chair for the Toronto
Association of System and Software
Quality, and a regular columnist
for Better Software magazine and
StickyMinds.com. Contact Michael at
mb@developsense.com.

Don’t Stop Now!

Log on to StickyMinds.com
and join Michael Bolton

and your peers in a
conversation about this topic.

At the end of the digital column, add
your views or just read

what others have to say.

