
October 2005 $9.95 www.StickyMinds.com

OUT WITH THE OLD
Put the squeeze on

legacy code
PAGE 30

IN WITH THE NEW
A lesson in scripting

languages
PAGE 24

The Print Companion to

A How
-to Guide for Fixing a

Failing Project

PAGE 18

Do-It-YourselfDo-It-Yourself

In previous columns, I’ve talked about
critical thinking and its importance to
Rapid Testing, and I’ve introduced James
Bach’s Heuristic Test Strategy Model
(HTSM). In the previous issue, I covered
its first part, the Project Environment.
This time, I’ll focus on the Product
Elements, which, as a whole, provide one
of the model’s perspectives on test coverage.
To Rapid Testers, coverage is the extent
to which we’ve tested a program according
to our mental models.

Why “models” instead of “model”?
When we model something, we focus on
certain attributes of it while ignoring
others. This gives us the opportunity to
comprehend some important aspect of
the system, but by removing information,
we risk being oblivious to other important
things. Good mental models are heuristic;
they’re a set of guidelines to help us solve
a problem, but they are both provisional—
used for a specific, temporary purpose—
and, above all, fallible.

If we are conscious that our models
are incomplete, we may be more inclined
to think not only about the donut but
also about the hole: where the boundaries
are between them, whether the hole is an
essential part of the donut, and so forth.
By using several models, we hope to
avoid missing important information
when someone produces a donut that has
cream or jelly in the middle instead of a
hole—or when someone arrives with a
cinnamon bun or a bagel. The quality of
our coverage depends not only on the
quality of our models but also on the
extent to which they are diverse.

For example, one way to model a
product is to look at its source code as a
sequence of lines, each of which could be
executed at some point. We could use a
tool that shows we’ve executed every line
and dupe ourselves into thinking that
we’ve tested well. But if a feature were
missing, the world’s greatest code coverage
tool wouldn’t notice. As Rapid Testers we
do not restrict ourselves to that single model
when we design our tests. Instead, we try

to Break Software, gives an example of
renaming MSRATING.DLL, a library
associated with Internet Explorer. The
.DLL is supposed to prevent access to
restricted sites, but when it’s missing, the
larger product fails to block access—and
the failure happens without an error
message. In some conditions, something
that is only momentarily absent might as
well vanish entirely. If the network cable
is unplugged, does the product topple?

Function is what the product does.
Function is usually the premise of our
requirements or stories and the focus of
our code, thus apparently straightforward
to model. On the other hand, a functional
model might gloss over significant
details. Try observing a piece of software
for a few minutes and consider that every
visible or audible change to the system is
the result of some function. Which
functions are under the direct control of
our product? Which are not? How do they
interact? Which functions and interactions
might be missing from our tests?

If we have a function that’s intended to
delete a customer record from a database,
we test to make sure that the record is
there before we delete it and that it is gone

to analyze and decompose the product
using several different models of the system.
In the Product Elements, the key words are
Structure, Function, Data, Platform, and
Operations—SFDPO—and to remember it,
we think “San Francisco Depot.”

Even though we don’t usually think of
software’s physical nature, we can model
a product in terms of its Structure; a
product can be manifested in (or on)
concrete, physical parts. Files on a disk
might include object code, templates,
sample data, configuration files, or
Registry settings. Other physical aspects
of a product might include cardboard
boxes, manuals, pieces of paper, CDs,
monitors, workstations, servers, network
cables, and so forth. Does our test strategy
incorporate ideas informed by these
physical objects?

When developers are writing or
updating a product, changing some aspect
of the intended structure can strengthen or
weaken the product. What could happen
if some component were defective or
missing? We can test this easily by
renaming a file—rendering it invisible to
the application that calls it. James
Whittaker, in his wonderful book How

10 BETTER SOFTWARE OCTOBER 2005 www.StickyMinds.com

Test Connection

Elemental Models
by Michael Bolton

G
et

ty
 Im

ag
es

Test Connection

www.StickyMinds.com OCTOBER 2005 BETTER SOFTWARE 11

afterward. The hole in the donut here is
the idea that while a piece of software is
intended to perform some function, it
should perform no other function and no
additional function. When a user invokes
the “delete customer” function, we should
be alarmed if the “delete transaction”
function were called instead or as well.
This is why, when we think of functional
tests, Rapid Testers also think quickly:
What functions shouldn’t happen?
Could we use tools like (on Windows)
PC Magazine’s INCTRL or the SysInternals
Registry Monitor (REGMON) and
File Monitor (FILEMON) to watch
for the unexpected?

If we stick strictly to a functional
story (“this does this”), we’ll miss all
kinds of problems that Data can trigger
(“this does this with that”). Material
products are not expected to cope gracefully
if the input is utterly unreasonable. No one
would expect a shopping cart to keep a
criminal imprisoned or to survive if
someone dropped a steamship on it. But
in the world of software, all data arrives
in bits, which means that the application
itself has to determine reasonableness.
Thus hackers regularly—and successfully—
attack by sending input that is unexpected
or “bad” in context or by overwhelming
tiny input fields with colossal amounts of
data. Forced-error tests, invalid messages,
incompatible file types, or malformed
packets can expose dramatic risks to a
product. For another hole in the data
donut, you might think about how the
program behaves when expected data is
missing entirely. Think about how our
world could be unrecognizable if only
one thing were different about it. Now
consider: How would things be different
for our product if the expected data were
different—even if only by a single byte?

When we think about the Platform on
which our software runs, it’s easy to fall
into the trap of considering only the
operating system or computer. In the
HTSM, platform represents the stuff that
you can’t change: all of the aspects of the
product—and the system that surrounds
it—that are outside the immediate con-
trol of your project. Most elements of the
platform are developed and built externally.
Even components or libraries that are
internal to our organization might not

be under development or within scope
for our current project, in which case
we’re stuck with them.

We consider platform because no
technology is created from scratch.
All software is built on some existing
technological foundation. If any part of
that foundation shifts, the product can
fall like a house of cards. If some part of
the user’s platform is incompatible with
our product, the user may not have the
option or the inclination to change that
part. We also might be blindsided if the
user changes the platform and breaks its
existing support for our product.

There’s one kind of platform that
testers sometimes forget, and it’s strongly
linked to data—previous versions of your
product and its data files. We don’t have
control over old data because it comes
from the past. Upgradability and backward
compatibility testing focus on problems
that arise as a product evolves. Have we
really considered everything upon which our
program depends? How would changing a
dependency affect the program?

Other aspects of the model—especially
structure and function—describe the product
in terms of a kind of Platonic existence,
isolated from the rest of the system.
Operations are patterns of actually using
the product; they’re where the product
meets the people who use it.

Testers often write simple operational
tests based on use cases, which can be
helpful ways to describe functionality but
which typically are instances of single,
atomic tasks. Testers also consider
extreme operational tests, such as load
and stress conditions. Both simple and
complex operational models can ignore
mundane, but typical, real-world ways of
operating the program. People perform a
bunch of different actions in a row. They
use business products outside of business
hours, they use products in different time

zones, and they use products in innovative
but plausible ways. People also use
products in ways we might disfavor. They
change their minds, they go back and
forth, and they make mistakes. That’s
why Hans Buwalda’s “soap opera”
testing (see the February 2004 issue of Better
Software magazine) is a wonderful (and
fun!) way to think about operations. Have
we considered disfavored use? Have we
also considered disfavored users—hackers—
and disenfranchised users—people with
disabilities? Have we considered installation
and deployment—especially continued
operation during an upgrade cycle—as part
of our program’s operational life?

SFDPO is only one set of product
models that Rapid Testers find useful for
designing tests. As an exercise, you might
wish to consider how the Structure,
Function, Data, Platform, and Operations
models are interdependent—how each
is related to and conditioned by the
others—and how thinking about the
interdependencies could lead to even
more test ideas. {end}

Michael Bolton lives in Toronto and
teaches heuristics and exploratory testing
in Canada, the United States, and other
countries as part of James Bach’s Rapid
Software Testing course. He is a regular
columnist for Better Software magazine
and StickyMinds.com. Contact Michael
at mb@developsense.com.

Don’t Stop Now!

Log on to StickyMinds.com and
join Michael Bolton and your
peers in a conversation about

this topic. At the end of the
digital column, add your views or
just read what others have to say.

Tell us what you like—and don't like—about this or any other issue of Better Software.
Email your comments to editors@bettersoftware.com.

