
July/August 2005 $9.95 www.StickyMinds.com

WE’RE ALL IN THIS
TOGETHER

Create Agile subteams
that work for the

greater good

PAGE 34

THE NOT-SO-GREAT
DIVIDE

Factors to help you
span the gap between

disciplines

PAGE 12

The Print Companion to

PAGE 28

In the last column, I introduced Rapid
Testing, a skills-based approach to software
testing. For the next few columns, we’re
going to look at one of the key skills of
Rapid Testing: critical thinking. Testers
provide a service to management in
the form of information, which allows
management to make informed business
decisions about software. As testers, we
provide better information—and make
better decisions possible—when we think
critically about software.

What does it mean to think critically?
The purpose of critical thinking is to
make reasoned, dispassionate, thorough,
and accurate assessments or evaluations.
These evaluations are based on detailed
observation, diligent collection and
weighing of evidence, recognition of
significant similarities and differences,
awareness of bias and blind spots (and to
the greatest extent possible, the elimination
of them), and continuously reapplying
what we’ve learned. Critical thinking requires
us to place the object of our thinking in
context. It also requires us to examine,
question, and improve the ways in which
we ourselves are thinking and observing.

In meetings, specifications, and hallway
conversations, most software projects with
which I’ve been involved have referred to
“the user”—an abstract, undifferentiated
term by which we identified all of the
possible customers of our work. Very
occasionally, people would consider the
differences between “novice users” and
“power users.” Yet some of us knew that
users are as diverse as birds. Critical
thinkers refine broader categories into
narrower subcategories, in order to be
able to recognize important similarities
and differences. It troubled me that we
lumped everyone together in this way.
Critical thinkers investigate the things
that others seem to take for granted. I
tried to think of customers instead of
users, and I tried to think of as many
kinds of them as I could.

year-old wholesale plumbing parts salesman,
who flew eight times a month across his
company’s entire northern region; and
for Lucy, a seventy-five-year-old retired
hairdresser, who had only flown three times
in the last six years to visit her nephew and
grand-niece; and for Sally, a veterinary
assistant who took an annual vacation in
Trinidad with two other women who
helped run the Girl Scout troop. The
point of the exercise was to humanize the
process: “Ed could probably handle the
icons that look like VCR buttons, but
Lucy might have a hard time with them.”

Whether it actually worked for him in
design (critical thinkers like to see plenty
of evidence and context to support claims
of effective process), a similar technique
has often worked for me. For each testing
task, I try to imagine and personalize several
different customers for the application.
Critical thinkers adopt ideas and techniques
across disciplines. As an example, several
years ago, I was involved with the testing
of an overhauled application designed for
use by bank tellers. The system struck me

A few years ago, I read The Inmates
are Running the Asylum, a wonderful
book by Alan Cooper. The thesis of the
book was that in the software industry
the business people have consistently
abdicated their responsibility for managing
interaction design—essentially, usability.
One design idea from the book had
enormous resonance for me as a tester: the
idea of personas. Mr. Cooper described his
process of creating an authentic cast of char-
acters to help guide in the design of soft-
ware. Far from categorizing people as
“novices,” “average users,” or “power
users,” Mr. Cooper and his team wrote
entire biographies of his model users. He
identified where (or if) they had gone to
college, what kind of job they had, and
he even went to a stock photo shop and
pulled pictures to represent the characters.
According to Mr. Cooper, the persona
model proved to be very powerful in
creating highly usable designs. Instead
of designing an in-flight entertainment
system for a “frequent flier,” the system
might be designed for Ed, a forty-six-

14 BETTER SOFTWARE JULY/AUGUST 2005 www.StickyMinds.com

Test Connection

Mission Critical:
Visualize, Personalize, Humanize
by Michael Bolton

G
ET

TY
 IM

A
G

ES

Test Connection

as confusing. On-screen instructions
were written in very inflated, jargon-
filled English. Things that I felt should
have taken a few keystrokes took lots of
deselecting of defaults, pointing and
clicking, and backtracking. As I was testing,
I invented for myself a number of teller
personas, each of whom had a different
history with the bank. One teller had been
around since before there were computer
terminals, another was brand new to the
job but had plenty of experience with
Windows programs, and another had just
been hired from a competing bank, but
despite having been in this country for three
years, she still had rough English skills.

This approach helped me to find a
bunch of design and usability bugs, but
the managers dismissed all of them as
unimportant. They claimed that the
rough spots in the application could be
addressed in training. I considered that
they might have been right. Critical thinkers
try to question their own assumptions at
least as quickly as those of anyone else. But
even after several weeks, I still found myself
being hindered by the layout of the screens

and the buttons. I still believed they were
clumsy. Critical thinkers seek evidence to
confirm or refute conjectures. I wondered
what other observations I could make.

One day I found myself at my own
bank branch. Several people were behind
the counter—trainees and experienced
staff, tellers and managers, people from
different cultures, and so on. I don’t
know how long the senior tellers had
taken to learn the system, but they sure
used it quickly. In fact, they were in too
much of a hurry to use the mouse; they
flew through the application using the
keyboard. Wait a minute—why were the
tellers going so quickly? Critical thinkers
try to remain open to moments of insight,
even though we don’t always have control
over them. I realized that the test plan was

was involved, the bank was suddenly
much more interested in those design
bugs I had reported earlier.

As testers, we often hear “No user
would ever do that!” James Bach has a
wonderful reframe: “No user that I can
think of, and that I like, would do that
on purpose.” Critical thinkers reject
absolute statements and reframe them in
ways that expose weaknesses in them.
When you’re testing an application, ask:
What might a user do by accident? What
kind of user might you not like—a
particularly dense trainee, or a hacker?
What kinds of users haven’t you thought
of? How is the user’s circumstance different
from your own? When you’re modeling a
user, whose input might be valuable?
Whose biases might be leading you to
miss important problems?

In writing this article, it occurred to
me that the bank might have had a
subtle agenda that no one dared to
utter: slowing down the tellers might
drive the customer toward inexpensive,
unsalaried, automated teller machines—
in which case, the omissions in the test

strategy would have been appropriate.
Critical thinkers are willing to consider
unpleasant explanations along with all
of the others. {end}

Michael Bolton lives in Toronto and
teaches James Bach’s Rapid Software
Testing course all over the world. Contact
Michael at mb@developsense.com.

ignoring the bank’s customers—the key
stakeholders for the application.

Bank customers are typically in a hurry
and don’t want to be unnecessarily delayed
as the teller struggles with the application.
One useful test would have been to time a
real transaction on the old system and on
the new system, not from the point of
view of system response (which was being
tested), but in terms of user interaction—
how long it takes the user to perform a
specific task. That kind of testing wasn’t
in the plan. I sneaked around a bit and
did a couple of tests anyway. The older
system, character and keyboard based,
though not as pretty, allowed me to work
through a task much more quickly.
The new system, with its clunky layout,
inappropriate default choices, and mouse-
centric interface, took almost twice as long.

Even though the application had been
designed for tellers to use, it was a part of
the bank’s larger mission of serving its
customers. Critical thinkers try to observe
ways in which systems are parts of larger
systems. So I changed my test strategy to
consider a new class of implicit users of

the system: the customers standing in
line, impatiently waiting for the teller.
Although I tried to be careful, I also tried
to perform each transaction as quickly as
possible, as though I were under pressure.
Transactions took even longer since I
made silly little mistakes. Because those
mistakes forced me down different paths,
I made several interesting discoveries:
Depending upon the order in which I
performed a transaction, the customer
might be charged a service charge (or
not); the application might display the
actual funds available after the transaction
(rather than the funds available before it);
and the transaction might be routed
through different internal accounts, some
of which would earn more interest for the
bank than others would. Now that money

www.StickyMinds.com JULY/AUGUST 2005 BETTER SOFTWARE 15

Don’t Stop Now!

Log on to StickyMinds.com and
join Michael Bolton and your

peers in a conversation about this
issue’s topic. At the end of the

digital column, add your views or
just read what others have to say.

I realized that the test plan was ignoring
the bank’s customers—the key stakeholders

for the application.

