


www.stickyminds.com JANUARY 2005 BETTER SOFTWARE 25

Test & Analyze

SOMETIMES WHEN FACED WITH AN UNFAMILIAR APPLI-

cation and a directive to test it, it can feel as if you’ve
been asked to chart a course through unknown waters.
You’re not sure what you’ll find on the voyage, but
you’ve got experience, some notions of what to look
for, and an idea of where you’d like to go. If you see
something surprising or unexpected, you’ll take note of
it. Those are exploratory skills, and sometimes they’re
all you need to begin.

Some testing advocates suggest that you should never
test without a “complete written specification.” That’s
unrealistic advice. First, there are plenty of contexts in
which you may be asked to test without a formal speci-
fication: when you’re evaluating a piece of commercial
software to see if it suits your company’s needs; when
your organization’s production code is so old and so
heavily patched that the original specification would be
meaningless—even if it could be found; or when work-

You don’t
always need 
to wait for

complete
specifications 

to start your
testing effort. 

BY MICHAEL BOLTON

Testing
Without
aMap



ing on Agile projects. Second, “complete-
ness” is entirely dependent upon perspec-
tive and context. Even so-called “com-
plete” specifications contain much that is
implicit. In fact, the more explicit the
document, the longer and more ponder-
ous it is—and the less likely that some-
one will read it in its entirety. Finally, cer-
tain kinds of specifications might be
supplied to you through some means
other than a formal document—conver-
sation, email, or your own inferences. A
quick meeting with the boss, combined
with your skills at identifying value,
risks, and problems, might give you all
the charter you need to begin supplying
useful information to management.

An effective tester can always obtain
valuable information by exploration,
even if the sole purpose of exploring is to
gather information for a more detailed
test strategy.

When the explorers of old set sail for
uncharted waters, they did not set out
unequipped. They knew the sun and the
stars, and they carried tools such as
compasses, sextants, and clocks, not
only for navigation but also for map-
making. More importantly, they ven-
tured out with extensive background
knowledge and skills, which included
deduced reckoning, celestial navigation,
and horse sense. For exploratory testers,
knowledge is often represented in two
terms that you’ll use as a testing expert:
oracles and heuristics. An oracle is a
principle or mechanism by which we
can tell if the software is working ac-
cording to someone’s criteria; an oracle
provides a right answer—according to
somebody. A heuristic is a provisional
and fallible guide by which we investi-
gate or solve a problem; it’s also a
method by which learning takes place as
a result of discoveries informed by ex-
ploration.

James Bach has given us a helpful set
of oracle heuristics, to which I’ve added
one, in the form of this mnemonic: HIC-
CUPPS. The idea is that a product should
be consistent with:

History: The feature’s or function’s cur-
rent behavior should be consistent with
its past behavior, assuming that there is
no good reason for it to change. This
heuristic is especially useful when testing
a new version of an existing program.

Image: The product’s look and behavior
should be consistent with an image that
the development organization wants to
project to its customers or to its internal
users. A product that looks shoddy often
is shoddy.

Comparable products: We may be able
to use other products as a rough, de facto
standard against which our own can be
compared.

Claims: The product should behave the
way some document, artifact, or person
says it should. The claim might be made
in a specification, a Help file, an adver-
tisement, an email message, or a hall-
way conversation, and the person or
agency making the claim has to carry
some degree of authority to make the
claim stick.

Users’ expectations: A feature or func-
tion should behave in a way that is con-
sistent with our understanding of what
users want, as well as with their reason-
able expectations.

The Product itself: The behavior of a giv-
en function should be consistent with the
behavior of comparable functions or
functional patterns within the same
product unless there is a specific reason
for it not to be consistent.

Purpose: The behavior of a feature, func-
tion, or product should be consistent
with its apparent purpose.

Statutes: The product should behave in
compliance with legal or regulatory re-
quirements.

Remember: Heuristics are guidelines, not
edicts; they’re fallible. They aren’t univer-
sal—there are plenty of other ways by
which we can decide whether a product
is acceptable or unacceptable. There is
some conceptual overlap between some
of the points—but to an explorer, fea-
tures of the new territory overlap, too.

Armed with these tools, let’s imagine that
I’m working for a small start-up, and that
my company is going to be releasing its
software on CDs. The company doesn’t
have a lot of money, and every dollar

Test & Analyze

Figure 1: The main screen of Nero Cover Designer, shown immediately after startup.

Prepare for
theJourney Explore and

Discover

26 BETTER SOFTWARE JANUARY 2005 www.stickyminds.com



counts, so my boss has asked me to evalu-
ate the program that comes with the CD
burner: the popular Nero CD recording
software. Printing CD covers is a require-
ment, so she asks me to have a look at
Nero’s Cover Designer, a subset of the
CD recording package, to see whether the
company should use it. Instead of writing
up an elaborate test plan, I’ll just plunge
in, quit when I have more information,
and then (and only then) make some deci-
sions about how to proceed. Figure 1
shows what I see on the main screen just
after I start the program.

Yogi Berra was right: you can observe
a lot just by looking. One of the first
things I note is that there appears to be a
default setting for the font: Arial for the
face and 16 for the point size. My boss
doesn’t need to tell me to test fonts; I have
the consistency with purpose heuristic in
my head to tell me that, if the task is to
print CD covers, graphics and text—and
therefore fonts—are likely to be part of
that task. Do I care about the accuracy of
the point sizes and color depth of the
graphics? Maybe, but I can ask about
those things later, after I’ve run some oth-
er tests. I make a note to ask questions
about accuracy and move on.

I’m going to need to put something on
my CD cover, so I choose to insert a new
object. I click Object, Insert, Text Box.
Then I double-click the new object that
appears, and the dialog shown in Figure
2 pops up.

Something already feels funny. In the
new font properties area, the name of the
font has disappeared and the point size
now appears to be 8. In accordance with
the consistency within the product heuris-
tic, one would think that the font proper-
ties should be the same on both the main
screen and the new dialog. Do we have
our first bug? I’d say yes, but perhaps we
should do some checking. I’ll note it.

We don’t have a specification, but Win-
dows programs typically come with a
Help file. A program should be consis-
tent with claims it makes about itself,
and the Help file is usually full of claims

about what the program can do. So let’s
press the F1 key.

Why F1? Windows users have a
heuristic that F1 should trigger the Help
file, courtesy of the Windows User Inter-
face Guidelines. (See this issue’s Sticky-
Notes for more information.) Cover De-
signer is a Windows program, and a
program’s behavior should be consistent
with programs like it. If there is a
compelling reason for your program to
behave differently, then it might be
worthwhile to depart from de facto UI
standards. Otherwise, consistency with
other products is a favor to the user, sav-
ing her the time and trouble of learning a
different way of doing things.

When we press F1, a tooltip appears
at the hot spot on the mouse pointer:

The tooltip says, “Lets
you modify the con-
tents of the text”.
Shouldn’t that say,
“Lets you modify the
contents of the text
box”? That might be a
quibble, but in some
contexts I’d be willing
to call it a second bug.
If this were my pro-
gram, I might find the
imprecise English a
little embarrassing,
which would violate
the consistency with
image heuristic: A pro-
gram should be con-
sistent with the image that a
company wishes to present. And
another thing: shouldn’t F1 dis-
play the Help dialog instead of a
tooltip? By Windows conven-
tions, a tooltip should appear
when you hover over an item
with the mouse. I’ll write a cou-
ple more notes about these Help
issues; they might represent an-
other bug or two.

I want to open the Help file.
There’s another way to do
that—I can click the Help but-
ton to open it, click the Find tab,
and find all the references to
“text box.” (See Figure 3.)

Hmmm . . . there’s nothing here that
looks like a reference to text. In fact,
there’s nothing here that seems to refer to
anything in the Cover Designer. Let’s go to
the Index and look for the words “Cover
Designer.” All I see is Help for the Nero
CD-ROM burning software. That means
that either there is no Help for Cover De-
signer, or if there is a Help file, it’s not
coming up from inside Cover Designer.
That’s a problem based on the consistency
with user expectations heuristic—a user
could reasonably expect that a Help file
summoned from within an application
should be that application’s Help file.

Well, it seems as though I’ll have to
give up on Help, and that’s noteworthy.
Let’s return to the first presumed bug and
do some more investigation. I don’t
know exactly what my company is going
to put on the CD cover, but the specifics
don’t matter, so I’ll put in some text that

Test & Analyze

Figure 2: In the textbox properties box, the font name is

missing. Could this be a bug?

Figure 3: The Help dialog isn’t helpful.

Investigate
NewFindings

www.stickyminds.com JANUARY 2005 BETTER SOFTWARE 27



reflects the way that I might use the pro-
gram. (See Figure 4.)

When I type “Beatles Compilation”—
in fact, immediately after striking the B
key—the font size of 8 turns to 16, and
the formerly blank drop-down for the
typeface is suddenly set to Arial. The con-
sistency with the user’s reasonable expec-

tations heuristic suggests that typing some
text should not change the selected font
unless I’ve asked to do so. Even though
this rectifies the problem I noted as the
first bug, it does so in a way that gives me
pause, and this is arguably yet another
bug; I’ll write that down. I’ll highlight the
text that I’ve entered and choose a differ-

ent typeface and size;
again, specifics don’t
matter. I’ll select Comic
Sans MS and 26 points.
(See Figure 5.)

Then, I’ll press OK
to close the dialog.
Now, I’ll immediately
click the text box to
open the dialog again.
(See Figure 6.)

Presto! The type-
face is back to Arial,
and the size is 16. This
violates the consistency
with purpose heuristic.
Surely the purpose of
pressing OK (rather
than Cancel) on an ob-
ject is to retain the
properties that I’ve se-
lected until I explicitly
change them: A feature
or function should be
consistent with its ap-
parent purpose. An-
other bug to note.

Note that in this di-
alog there are tabs for
pen, brush, and image
as well as text. I try
this out, and I find that
every time I try to re-
open the text box to
modify one of these at-
tributes, the font infor-
mation disappears—an
inconvenience and an
annoyance and, even
without a specifica-
tion, manifestly a bug.
I’m disappointed be-
cause I seem to re-
member this feature
working in a previous
version of Nero Cover
Designer. That’s a vio-
lation of the consisten-
cy with history heuris-

tic: A program should behave in a man-
ner consistent with its own history or pre-
vious versions of the product.

The bugs in this program have been
pretty easy to find, and this last one is so
troublesome that I have some grave
doubts about the rest of the program. Af-
ter five minutes of testing, I’ll be able to
tell the boss that she should not rely on
this product to produce the company’s
CD covers—and thank goodness I didn’t
waste time preparing an elaborate test
plan based on some incomplete specifica-
tion that some programmer apparently
didn’t read.

This was a particularly egregious exam-
ple, but if you’re still adamant that you
need a written specification before you
can begin testing, consider what you’ve
just read in the context of two questions.
First, did we need a written specification
to provide important, credible, timely in-
formation to management? Second,
would the cost of researching and
preparing a specification—and waiting
for it to be prepared—add significantly
to the value of our report?

As you can see, in many contexts it’s
not only perfectly OK but also entirely de-
sirable to test without using a specifica-
tion. My background knowledge of GUIs
on Windows helped me recognize several
problems, and my ability to put myself in
a user’s shoes helped too. A few minutes
of exploration, wandering through one
feature of the program and looking
through the spyglass of those exploratory
testing heuristics, has helped me not only
to find bugs but also to identify credibly
why I think they’re bugs, even though I
had nothing like a complete, formal, writ-
ten specification. Although I didn’t have a
map, I was certainly able to explore and
compile one along the way. {end}

Michael Bolton lives in Toronto and
teaches heuristics and exploratory testing
in Canada, the United States, and other
countries as part of James Bach’s Rapid
Software Testing course. Contact Michael
at mb@developmentsense.com.

Test & Analyze

The Journey
Ends

Figure 4: After typing in the text box, the font name

appears.

Figure 5: The text is highlighted, and the typeface and size

are changed.

Figure 6: The typeface and size did not save with the text.

28 BETTER SOFTWARE JANUARY 2005 www.stickyminds.com




